Safety control with performance guarantees of cooperative systems using compositional abstractions

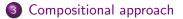
Pierre-Jean Meyer Antoine Girard Emmanuel Witrant

Université Grenoble-Alpes

ADHS'15, October 16th 2015

Cooperative control system

2 Centralized symbolic control



System description

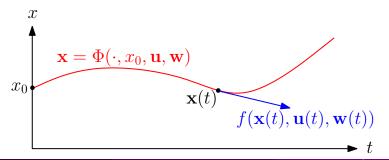
Nonlinear control system:

 $\dot{x} = f(x, u, w)$

Trajectories:

$$\mathbf{x} = \Phi(\cdot, x_0, \mathbf{u}, \mathbf{w})$$

- x: state
- u: control input
- w: disturbance input
- x, u, w: time functions



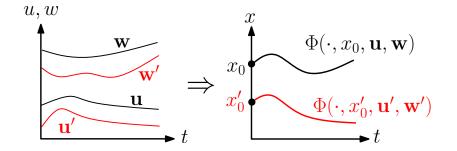
Pierre-Jean Meyer (Grenoble)

Cooperative system

Definition (Cooperativeness)

The system is cooperative if Φ preserves the componentwise inequality:

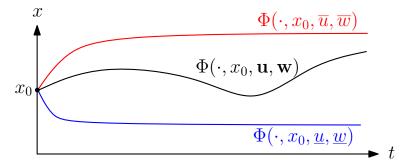
$$\mathbf{u} \ge \mathbf{u}', \ \mathbf{w} \ge \mathbf{w}', \ x_0 \ge x'_0 \Rightarrow \ \forall t \ge 0, \ \Phi(t, x, \mathbf{u}, \mathbf{w}) \ge \Phi(t, x', \mathbf{u}', \mathbf{w}')$$



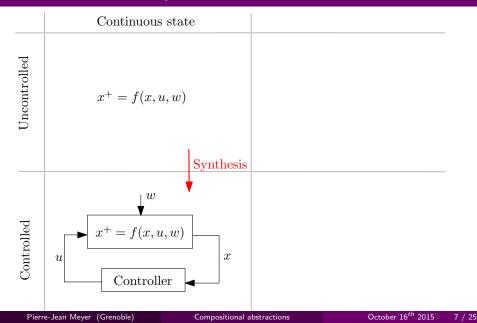
Bounded inputs

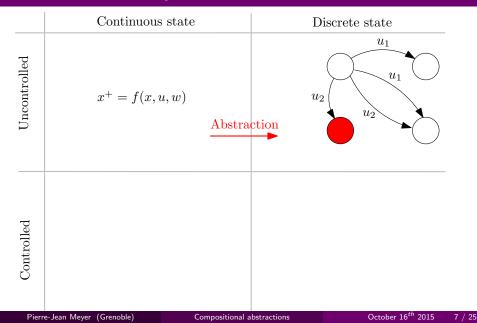
Control and disturbance inputs bounded in intervals:

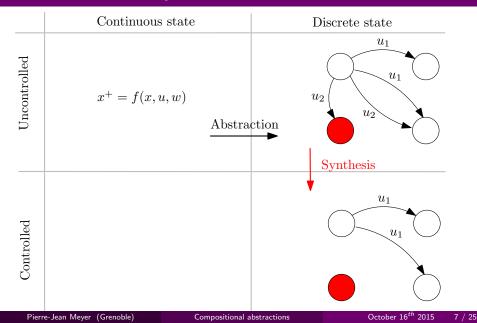
$$\begin{aligned} \forall t \geq 0, \ \mathbf{u}(t) \in [\underline{u}, \overline{u}], \ \mathbf{w}(t) \in [\underline{w}, \overline{w}] \\ \Longrightarrow \\ \forall t \geq 0, \ \Phi(t, x_0, \mathbf{u}, \mathbf{w}) \in [\Phi(t, x_0, \underline{u}, \underline{w}), \Phi(t, x_0, \overline{u}, \overline{w})] \end{aligned}$$

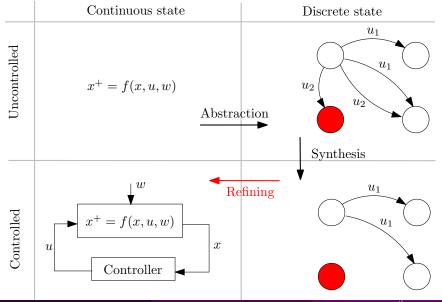


Cooperative control system





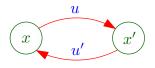




Pierre-Jean Meyer (Grenoble)

Transition systems

- $S=(X,U,\longrightarrow)$
 - Set of states X
 - Set of inputs U
 - Transition relation \longrightarrow
 - Trajectories: $x_1 \xrightarrow{u_1} x_2 \xrightarrow{u_2} x_3 \xrightarrow{u_3} \dots$

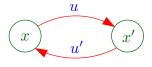


Transition systems

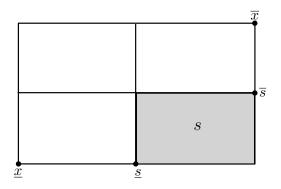
- $S=(X,U,\longrightarrow)$
 - Set of states X
 - Set of inputs U
 - Transition relation \longrightarrow
 - Trajectories: $x_1 \xrightarrow{u_1} x_2 \xrightarrow{u_2} x_3 \xrightarrow{u_3} \dots$

Sampled dynamics (sampling τ)

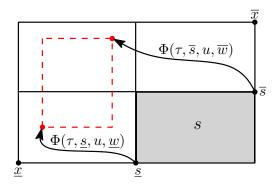
- $X = \mathbb{R}^n$
- $U = [\underline{u}, \overline{u}]$
- $x \xrightarrow{u} x' \iff \exists \mathbf{w} : [0, \tau] \to [\underline{w}, \overline{w}] \mid x' = \Phi(\tau, x, u, \mathbf{w})$
- Safety specification in $[\underline{x}, \overline{x}] \subseteq \mathbb{R}^n$



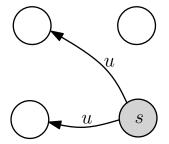
- Discretization of the control space $[\underline{u}, \overline{u}]$
- Partition \mathcal{P} of the interval $[\underline{x}, \overline{x}]$ into symbols



- Discretization of the control space $[\underline{u}, \overline{u}]$
- Partition \mathcal{P} of the interval $[\underline{x}, \overline{x}]$ into symbols
- Over-approximation of the reachable set (cooperativeness)



- Discretization of the control space $[\underline{u}, \overline{u}]$
- Partition \mathcal{P} of the interval $[\underline{x}, \overline{x}]$ into symbols
- Over-approximation of the reachable set (cooperativeness)
- Intersection with the partition



Obtain a finite abstraction $S_a = (X_a, U_a, \xrightarrow{\gamma})$

Alternating simulation

Definition (Alternating simulation relation)

 $H: X \rightarrow X_a$ is an alternating simulation relation from S_a to S if:

$$\forall u_a \in U_a, \ \exists u \in U \mid x \stackrel{u}{\longrightarrow} x' \text{ in } S \Longrightarrow H(x) \stackrel{u_a}{\longrightarrow} H(x') \text{ in } S_a$$

Alternating simulation

Definition (Alternating simulation relation)

 $H: X \rightarrow X_a$ is an alternating simulation relation from S_a to S if:

$$\forall u_a \in U_a, \ \exists u \in U \mid x \stackrel{u}{\longrightarrow} x' \text{ in } S \Longrightarrow H(x) \stackrel{u_a}{\xrightarrow{}} H(x') \text{ in } S_a$$

Proposition

The map $H: X \to X_a$ defined by

$$H(x) = s \Longleftrightarrow x \in s$$

is an alternating simulation relation from S_a to S:

$$\forall u_a \in U_a \subseteq U \mid x \xrightarrow{u_a} x' \text{ in } S \Longrightarrow H(x) \xrightarrow{u_a} H(x') \text{ in } S_a$$

Safety synthesis

Specification: safety of S_a in \mathcal{P} (the partition of the interval $[\underline{x}, \overline{x}]$)

$$F_{\mathcal{P}}(Z) = \{ s \in Z \cap \mathcal{P} \mid \exists u, \forall s \xrightarrow{u} s', s' \in Z \}$$

Safety synthesis

Specification: safety of S_a in \mathcal{P} (the partition of the interval $[\underline{x}, \overline{x}]$)

$$F_{\mathcal{P}}(Z) = \{ s \in Z \cap \mathcal{P} \mid \exists u, \forall s \xrightarrow{u} s', s' \in Z \}$$

Fixed-point Z_a of $F_{\mathcal{P}}$ reached in **finite time** Z_a is the **maximal safe set** for S_a , associated with the safety controller:

$$C_a(s) = \{ u \mid \forall \ s \xrightarrow{u}_a s', \ s' \in Z_a \}$$

Theorem

 C_a is a safety controller for S in Z_a .

Performance criterion

Minimize on a trajectory $(x^0, u^0, x^1, u^1, ...)$ of S:

$$\sum_{k=0}^{+\infty}\lambda^k g(x^k, u^k)$$

with a cost function g and a **discount factor** $\lambda \in (0, 1)$

Performance criterion

Minimize on a trajectory $(x^0, u^0, x^1, u^1, ...)$ of S:

$$\sum_{k=0}^{+\infty}\lambda^k g(x^k, u^k)$$

with a cost function g and a **discount factor** $\lambda \in (0, 1)$

Cost function on S_a : $g_a(s, u) = \max_{x \in s} g(x, u)$ Focus the optimization on a **finite horizon** of *N* sampling periods Accurate approximation if $\lambda^{N+1} \ll 1$

Optimization

Dynamic programming algorithm:

$$J_a^N(s) = \min_{u \in C_a(s)} g_a(s, u)$$
$$J_a^k(s) = \min_{u \in C_a(s)} \left(g_a(s, u) + \lambda \max_{\substack{s \stackrel{u}{\longrightarrow} s' \\ a \end{pmatrix}} J_a^{k+1}(s') \right), \ \forall k < N$$

 $J_a^0(s)$ is the worst-case minimization of $\sum_{k=0}^N \lambda^k g_a(s^k, u^k)$

Optimization

Dynamic programming algorithm:

$$J_a^N(s) = \min_{u \in C_a(s)} g_a(s, u)$$
$$J_a^k(s) = \min_{u \in C_a(s)} \left(g_a(s, u) + \lambda \max_{\substack{s \stackrel{u}{\longrightarrow} s' \\ a \end{pmatrix}} J_a^{k+1}(s') \right), \ \forall k < N$$

 $J_a^0(s)$ is the worst-case minimization of $\sum_{k=0}^N \lambda^k g_a(s^k, u^k)$

Receding horizon controller:

$$C_a^*(s) = \arg\min_{u \in C_a(s)} \left(g_a(s, u) + \lambda \max_{s \xrightarrow{u}_a s'} J_a^1(s') \right)$$

Theorem

Let $(x^0, u^0, x^1, u^1, ...)$ be a trajectory of S controlled with C_a^* . Let $s^0, s^1, ...$ such that $x^k \in s^k$, for all $k \in \mathbb{N}$. Then,

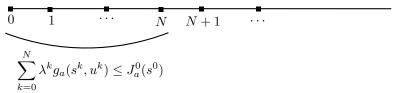
$$\sum_{k=0}^{+\infty}\lambda^k g(x^k,u^k) \leq$$

Theorem

Let $(x^0, u^0, x^1, u^1, ...)$ be a trajectory of S controlled with C_a^* . Let $s^0, s^1, ...$ such that $x^k \in s^k$, for all $k \in \mathbb{N}$. Then,

$$\sum_{k=0}^{+\infty}\lambda^k g(x^k,u^k)\leq J^0_{a}(s^0)+$$

Worst-case minimization on finite horizon:

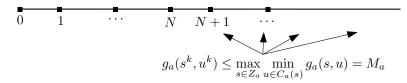


Theorem

Let $(x^0, u^0, x^1, u^1, ...)$ be a trajectory of S controlled with C_a^* . Let $s^0, s^1, ...$ such that $x^k \in s^k$, for all $k \in \mathbb{N}$. Then,

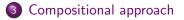
$$\sum_{k=0}^{+\infty}\lambda^k g(x^k,u^k)\leq J^0_a(s^0)+rac{\lambda^{N+1}}{1-\lambda}M_a$$

Worst-case minimization of each remaining steps (receding horizon):

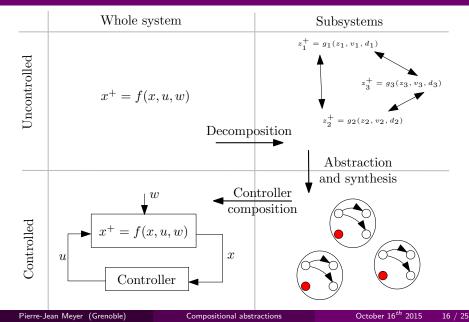


Cooperative control system

2 Centralized symbolic control

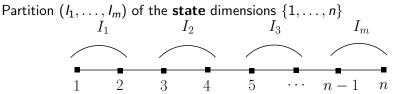


Compositional synthesis



Decomposition

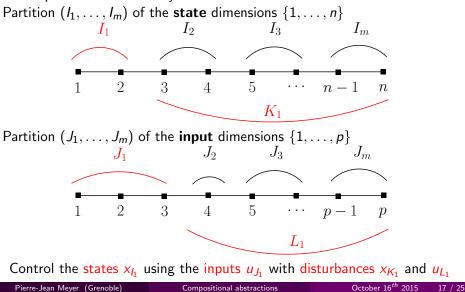
Decomposition into *m* subsystems:



Partition (J_1, \ldots, J_m) of the **input** dimensions $\{1, \ldots, p\}$ J_1 J_2 J_3 J_m J_m 1 2 3 4 5 \cdots p-1 p

Decomposition

Decomposition into *m* subsystems:



Symbolic abstraction $S_i = (X_i, U_i, \xrightarrow{i})$ of subsystem $i \in \{1, \ldots, m\}$:

Classical method, but with an assume-guarantee obligation:

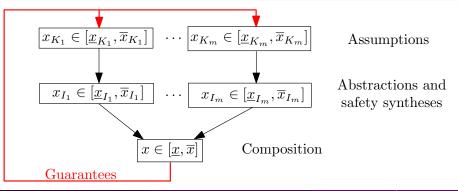
A/G Obligation (K_i)

Unobserved states: $x_{K_i} \in [\underline{x}_{K_i}, \overline{x}_{K_i}]$

Symbolic abstraction $S_i = (X_i, U_i, \underset{i}{\longrightarrow})$ of subsystem $i \in \{1, \ldots, m\}$: Classical method, but with an **assume-guarantee obligation**:

A/G Obligation (K_i)

Unobserved states: $x_{K_i} \in [\underline{x}_{K_i}, \overline{x}_{K_i}]$



Pierre-Jean Meyer (Grenoble)

Synthesis

Safety synthesis in the partition of $[\underline{x}_{I_i}, \overline{x}_{I_i}]$:

- maximal safe set: $Z_i \subseteq X_i$
- safety controller: $C_i : Z_i \to 2^{U_i}$

Performances optimization:

• cost function
$$g_i(s_{l_i}, u_{J_i})$$
, with $g_a(s, u) \leq \sum_{i=1}^m g_i(s_{l_i}, u_{J_i})$

• deterministic controller: $C_i^*: Z_i \rightarrow U_i$

Composition of safe sets and safety controllers:

•
$$Z_c = Z_1 \times \cdots \times Z_m$$

• $\forall s \in Z_c, \ C_c(s) = C_1(s_{l_1}) \times \cdots \times C_m(s_{l_m})$

Theorem

 C_c is a safety controller for S in Z_c .

Composition of safe sets and safety controllers:

•
$$Z_c = Z_1 \times \cdots \times Z_m$$

• $\forall s \in Z_c, \ C_c(s) = C_1(s_{l_1}) \times \cdots \times C_m(s_{l_m})$

Theorem

 C_c is a safety controller for S in Z_c .

Proposition (Safety comparison)

 $Z_c \subseteq Z_a$.

•
$$\forall s \in Z_c, \ C_c^*(s) = (C_1^*(s_{l_1}), \dots, C_m^*(s_{l_m}))$$

• Let
$$M_i = \max_{s_i \in Z_i} \min_{u_i \in C_i(s_i)} g_i(s_i, u_i)$$

Theorem

Let
$$(x^0, u^0, x^1, u^1, ...)$$
 be a trajectory of S controlled with C_c^* .
Let $s^0, s^1, ...$ such that $x^k \in s^k$, for all $k \in \mathbb{N}$. Then,
 $\sum_{k=0}^{+\infty} \lambda^k g(x^k, u^k) \leq \sum_{i=1}^m J_i^0(s_{l_i}^0) + \frac{\lambda^{N+1}}{1-\lambda} \sum_{i=1}^m M_i$

•
$$\forall s \in Z_c, \ C_c^*(s) = (C_1^*(s_{l_1}), \dots, C_m^*(s_{l_m}))$$

• Let
$$M_i = \max_{s_i \in Z_i} \min_{u_i \in C_i(s_i)} g_i(s_i, u_i)$$

Theorem

Let
$$(x^0, u^0, x^1, u^1, ...)$$
 be a trajectory of S controlled with C_c^* .
Let $s^0, s^1, ...$ such that $x^k \in s^k$, for all $k \in \mathbb{N}$. Then,
 $\sum_{k=0}^{+\infty} \lambda^k g(x^k, u^k) \leq \sum_{i=1}^m J_i^0(s_{l_i}^0) + \frac{\lambda^{N+1}}{1-\lambda} \sum_{i=1}^m M_i$

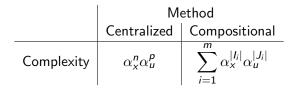
Proposition (Guarantees comparison)

$$orall s\in Z_c, \qquad J^0_{a}(s)+rac{\lambda^{N+1}}{1-\lambda}M_{a}\leq \sum_{i=1}^m J^0_i(s_{l_i})+rac{\lambda^{N+1}}{1-\lambda}\sum_{i=1}^m M_i$$

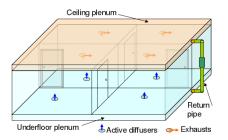
Pierre-Jean Meyer (Grenoble)

Complexity

- n: state space dimension
- p: control space dimension
- $\alpha_x \in \mathbb{N}$: number of symbols **per dimension** in the state partition
- $\alpha_u \in \mathbb{N}$: number of controls **per dimension** in the input discretization
- $|\cdot|$: cardinality of a set



Complexity example



Application to temperature control

4-room building Each room equipped with one fan

n = 4 states p = 4 control inputs

	Centralized (4D)	Compositional $(4 * 1D)$
Precisions of abstraction	$\alpha_x = 10$	$\alpha_x = 20$
	$\alpha_u = 4$	$\alpha_u = 9$
Computation time	> 2 days	1.1 second

Conclusions and perspectives

The compositional approach provides:

- **Similar** safety and performance results to the centralized method, although **weaker** due to the loss of information
- The possibility of a significant **complexity reduction**
 - \Longrightarrow Tradeoff between the accuracy and the complexity reduction

Conclusions and perspectives

The compositional approach provides:

- **Similar** safety and performance results to the centralized method, although **weaker** due to the loss of information
- The possibility of a significant **complexity reduction**
 - \Longrightarrow Tradeoff between the accuracy and the complexity reduction

Perspectives

- Extension of the symbolic compositional approach
 - to non-cooperative systems
 - to other specifications than safety
- Adaptive symbolic control framework:
 - measure the disturbance; tight estimation of its future bounds
 - synthesize compositional controller on the more accurate abstraction
 - apply controller until the next measure
 - \Longrightarrow increased precision and robustness, local cooperativeness

Safety control with performance guarantees of cooperative systems using compositional abstractions

Pierre-Jean Meyer Antoine Girard Emmanuel Witrant

Université Grenoble-Alpes

ADHS'15, October 16th 2015

Symbolic abstraction

State partition \mathcal{P} of $[\underline{x}, \overline{x}] \subseteq \mathbb{R}^n$ into α_x identical intervals per dimension

$$\mathcal{P} = \left\{ \left[\underline{\underline{s}}, \underline{\underline{s}} + \frac{\overline{\underline{x}} - \underline{x}}{\alpha_x} \right] \mid \underline{\underline{s}} \in \left(\underline{x} + \frac{\overline{\overline{x}} - \underline{x}}{\alpha_x} * \mathbb{Z}^n \right) \cap [\underline{x}, \overline{x}] \right\}$$

Input discretization U_a of $[\underline{u}, \overline{u}] \subseteq \mathbb{R}^p$ into $\alpha_u \ge 2$ values per dimension

$$U_{a} = \left(\underline{u} + \frac{\overline{u} - \underline{u}}{\alpha_{u} - 1} * \mathbb{Z}^{p}\right) \cap [\underline{u}, \overline{u}]$$

Sampling period

Guidelines for the **viability kernel**¹ (maximal invariant set):

$$2L\tau^2 \sup_{x \in [\underline{x}, \overline{x}]} \|f(x, \overline{u}, \overline{w})\| \geq \frac{\|\overline{x} - \underline{x}\|}{\alpha_x}$$

- τ : sampling period
- $\frac{\|\overline{\mathbf{x}} \underline{\mathbf{x}}\|}{\alpha_{\mathbf{x}}}$: step of the state partition
- L: Lipschitz constant
- $\sup_{x \in [\underline{x}, \overline{x}]} ||f(x, \overline{u}, \overline{w})||$: supremum of the vector field

¹P. Saint-Pierre. Approximation of the viability kernel. *Applied Mathematics and Optimization*, 29(2):187–209, 1994.

Pierre-Jean Meyer (Grenoble)

Complexity

- n: state space dimension
- p: control space dimension
- $\alpha_x \in \mathbb{N}$: number of symbols **per dimension** in the state partition
- $\alpha_u \in \mathbb{N}$: number of controls **per dimension** in the input discretization
- $|\cdot|$: cardinality of a set

	Method	
	Centralized	Compositional
Abstraction (successors computed)	$2\alpha_x^n \alpha_u^p$	$\sum_{i=1}^{m} 2\alpha_x^{ I_i } \alpha_u^{ J_i }$
Dynamic programming (max iterations)	$N\alpha_x^{2n}\alpha_u^p$	$\sum_{i=1}^m N \alpha_x^{2 I_i } \alpha_u^{ J_i }$