

Using progress sets on non-deterministic transition systems for multiple UAV motion planning

Paul Rousse, Pierre-Jean Meyer, Dimos Dimarogonas

KTH, Royal Institute of Technology July 14th 2017

Context and motivation

Progress sets

Experimental results

Motivation example

High-level control objective:

- get some water to be dropped on the fire
- while avoiding the obstacle

Discrete representation

Partition of the environment

- relevant cells labeled with water, fire and obstacle
- other cells unlabeled

Discrete representation

Model the system as a **Finite Transition System Non-determinism** caused by:

- disturbances
- unknown initial state within a cell

High-level specifications

Linear Temporal Logic formula

- $\varphi = (\Box \diamondsuit water) \land (\Box \diamondsuit fire) \land (\Box \neg obstacle)$
- goal: find a controller such that the formula is satisfied by the sequence of labels generated by the controlled system
- ▶ label sequence: $\{\emptyset\}, ..., \{\emptyset\}, \{water\}, \{\emptyset\}, ..., \{\emptyset\}, \{fire\}, ...$

Control synthesis approach

For **non-deterministic** transition systems, finding a controller may not be possible.

 Consider augmented transition systems with progress sets that represent guarantees of progress towards satisfaction of the specification

Context and motivation

Progress sets

Experimental results

Possible transitions from i_0 with control input r

Possible transitions from i_1 with control input κ

Possible infinite behavior on the transition system:

$$i_0 \stackrel{\checkmark}{\rightarrow} i_1 \stackrel{\checkmark}{\rightarrow} i_0 \stackrel{\checkmark}{\rightarrow} i_1 \stackrel{\checkmark}{\rightarrow} i_0 \stackrel{\checkmark}{\rightarrow} i_1 \stackrel{\checkmark}{\rightarrow} \dots$$

This infinite behavior may not be actually feasible by the continuous dynamics if i_0 and i_1 are considered together

Progress set: set $\{(q_1, u_1), \ldots, (q_m, u_m)\} \in 2^{Q \times U}$ of pairs (state,control) whose combined action is guaranteed to eventually leave the corresponding set of states $\{q_1, \ldots, q_m\}$.

Nilsson and Ozay, Incremental synthesis of switching protocols via abstraction refinement, CDC 2014.

Control synthesis approach

- Provided: augmented transition system with progress sets
- Main contribution: how to use these progress sets for the control synthesis

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: G

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: $G \cup q_1 = G$

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: $G \cup q_2 \cup q_3 \cup q_4 = G$

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: *G*∪*q*₅

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: *G*∪*q*₅∪*q*₆

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: *G*∪q₅∪q₆∪q₇

Expand goal set *G* with the progress sets guaranteed to go to *G*

Goal set: $G \cup q_5 \cup q_6 \cup q_7 \cup q_8$

Algorithm terminates: init $\subseteq G \cup q_5 \cup q_6 \cup q_7 \cup q_8$

Context and motivation

Progress sets

Experimental results

System constituted of 2 quadrotors: quad 1 and quad 2

Control objective: surveillance and safety

 $\blacktriangleright \varphi = (\Box \diamond a) \land (\Box \diamond b) \land (\Box \neg collide) \land (\Box \neg out)$

Proposed approach

- Consider non-deterministic finite transition systems augmented with progress sets
- Propose a new planning algorithm for the control synthesis under LTL specifications

Future work

 Computation of progress sets for general classes of systems

Progress set identification

Single integrator system with disturbances:

 $\dot{x} = u + w$

Abstract continuous dynamics into a Finite Transition System

- Q: finite set of states
- U: finite set of control inputs

Check a candidate progress set

- candidate: $p = \{(q_0, u_0), (q_1, u_1), ..., (q_n, u_n)\} \in 2^{Q \times U}$
- get the set of controls $U = \{u_0, u_1, ..., u_n\}$ involved in p
- compute the convex hull C_U of U

p is a progress set $\Leftrightarrow \mathbf{0} \notin \mathcal{C}_U$