TIRA: Toolbox for Interval Reachability Analysis

Pierre-Jean Meyer, Alex Devonport, Murat Arcak

April 18th 2019

Reachability analysis

Discrete-time system $x^+ = F(t, x, p)$

Reachability problem

- Initial time: t₀
- Initial states $[\underline{x}, \overline{x}]$
- Input bounds $[\underline{p}, \overline{p}]$

Reachable set in one discrete step $\{F(t_0, x, p) | x \in [\underline{x}, \overline{x}], p \in [\underline{p}, \overline{p}]\}$

Reachability analysis

Discrete-time system $x^+ = F(t, x, p)$

Reachability problem

- Initial time: t₀
- Initial states $[\underline{x}, \overline{x}]$
- Input bounds $[\underline{p}, \overline{p}]$

Reachable set in one discrete step $\{F(t_0, x, p) | x \in [\underline{x}, \overline{x}], p \in [\underline{p}, \overline{p}]\}$

Continuous-time system $\dot{x} = f(t, x, p)$

Reachability problem

- Time range: $[t_0, t_f]$
- Initial states $[\underline{x}, \overline{x}]$
- Input bounds $[\underline{p}, \overline{p}]$

Reachable set at final time t_f $\{x(t_f; t_0, x_0, p) | x_0 \in [\underline{x}, \overline{x}], p : [t_0, t_f] \rightarrow [\underline{p}, \overline{p}]\}$

Over-approximations

Flexible set representations

- polytopes
- ellipsoids
- level sets
- interval pavings

Accurate approximations Low scalability

Intervals

- easy to manipulate
- defined with only 2 state vectors
- intersection is still an interval

Good scalability Lower accuracy

4 / 8

User-inputs

• Required

User-inputs

- Required
- Recommended

User-inputs

- Required
- Recommended
- Optional

User-inputs

- Required
- Recommended
- Optional

Extensible architecture

Over-approximation methods

State $x \in \mathbb{R}^n$

Method	Tightness conditions	Complexity
Contraction/growth bound		1
CT mixed-monotonicity	monotone	2
DT mixed-monotonicity	sign-stable Jacobian	2 <i>n</i>
SD mixed-monotonicity (IA)	sign-stable sensitivity	$\geq O(2n)$
SD mixed-monotonicity (SF)	sign-stable sensitivity	$O(2^n)$

 $Complexity \sim number \ of \ successor \ evaluations$

Illustration: traffic network

Pierre-Jean Meyer (UC Berkeley) TIRA: Toolbox for Interval Reachability Analysis

Conclusions

Matlab library of 4 interval reachability methods

- covering most nonlinear systems
- both continuous-time and discrete-time systems
- good scalability

Toolbox architecture

- easily extensible
- can choose most suitable method

```
https://gitlab.com/pj_meyer/TIRA
pjmeyer@berkeley.edu
```

Comparison with DynIbex¹

Protein interactions²

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -x_1 + x_2 \\ \frac{x_1^2}{1 + x_2^2} - 0.3x_2 \end{pmatrix}$$

- Initial set: $[0, 0.3]^2$
- Time range: [0,10] s

Method	Time	
TIRA (CTMM)	26 ms	
Dynlbex	1.9 s	

¹Julien Alexandre and Alexandre Chapoutot, *Validated explicit and implicit Runge-Kutta methods*. Reliable Computing v. 22, 2016.

²Lee A. Segel, *Modeling dynamic phenomena in molecular and cellular biology*. Cambridge University Press, 1984.

Pierre-Jean Meyer (UC Berkeley) TIRA: Toolbox for Interval Reachability Analysis