Interval Reachability Analysis using Second-Order Sensitivity

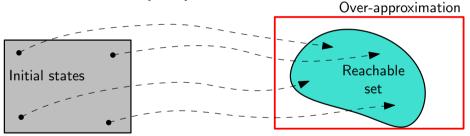
Pierre-Jean Meyer, Murat Arcak

IFAC 2020

Reachability analysis

Continuous-time system: $\dot{x} = f(x)$

Objective: finite-time reachability analysis from initial interval



Exact computation of the reachable set: impossible

 \rightarrow over-approximation by a multi-dimensional interval

	Discrete-time mixed-monotonicity ¹	Sampled-data mixed-monotonicity
		$\dot{x} = f(x)$
System	$x^+ = F(x)$	$x^{+} = x(T; x_{0})$
Requirement	Bounded Jacobian	Bounded sensitivity
	$\frac{\partial F(x)}{\partial x} \in [\underline{J}, \overline{J}]$	$\frac{\partial x(\mathcal{T};x_0)}{\partial x_0} \in [\underline{S},\overline{S}]$

Main challenge: compute sensitivity bounds with a tunable complexity/accuracy tradeoff

¹Meyer, Coogan and Arcak, *IEEE Control Systems Letters*, 2018

Jacobian and Sensitivity definitions

Jacobian matrices of the continuous-time system $\dot{x} = f(x)$:

$$J^{x}(x) = \frac{\partial f(x)}{\partial x}$$
 $J^{xx}(x) = \frac{\partial J^{x}(x)}{\partial x}$

First-order sensitivity

Second-order sensitivity

$$S^{x}(t; x_{0}) = \frac{\partial x(t; x_{0})}{\partial x_{0}}$$

$$S^{xx}(t; x_{0}) = \frac{\partial S^{x}(t; x_{0})}{\partial x_{0}}$$

$$\dot{S}^{x} = J^{x} * S^{x}$$

$$\dot{S}^{x}(0; x_{0}) = I_{n}$$

$$\dot{S}^{xx} = J^{x} * S^{xx} + J^{xx} * (S^{x} \otimes S^{x})$$

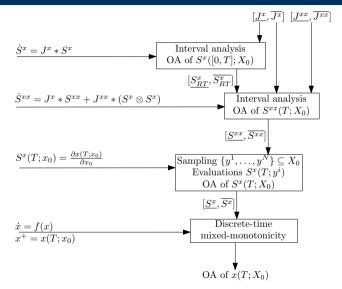
$$S^{xx}(0; x_{0}) = 0$$

Overview of the 4-step reachability procedure

3 steps to bound S^{\times}

- Interval analysis² on linear systems of S^x and S^{xx}
- Grid-based sampling on S^{\times}

Last step for discrete-time mixed-monotonicity on sampled-data system



²Althoff, Stursberg and Buss, CDC 2007

Pierre-Jean Meyer (UC Berkeley)

Step 1: First-order sensitivity tube

Linear system $\dot{S}^{x} = J^{x} * S^{x}$ with initial condition $S^{x}(0) = I_{n}$

- If J^{\times} is constant, solutions are known: $S^{\times}(t) = e^{J^{\times} * t}$
- If $J^{x} \in [\underline{J^{x}}, \overline{J^{x}}]$: $S^{x}(t) \in e^{[\underline{J^{x}}, \overline{J^{x}}] * t}$
- Interval matrix exponential evaluated using Taylor expansion and interval arithemtics:

$$e^{[\underline{J^{x}},\overline{J^{x}}]*t} \subseteq \sum_{i=0}^{+\infty} \frac{([\underline{J^{x}},\overline{J^{x}}]*t)^{i}}{i!}$$

• Truncate Taylor expansion and over-approximate remainder

Reachable tube $S^{\times}([0, T])$

- Interval hull of initial $S^{\times}(0) = I_n$ and final solutions $S^{\times}(T) \in e^{[\underline{J^{\times}}, \overline{J^{\times}}]*T}$
- Enlarge hull to guarantee over-approximation

Step 2: Second-order sensitivity set

Affine system $\dot{S}^{xx} = J^x * S^{xx} + J^{xx} * (S^x \otimes S^x)$ with initial condition $S^{xx}(0) = 0$

- Similar approach defining an interval affine system
- Need bounds on J^{\times} and $J^{\times \times} * (S^{\times} \otimes S^{\times})$ for all $t \in [0, T]$
 - Bounds on J^{x} and J^{xx} assumed to be provided
 - This is why step 1 computed the reachable **tube** of S^{\times}
- Denote $J^{xx} * (S^x \otimes S^x) \in [\underline{B}, \overline{B}]$

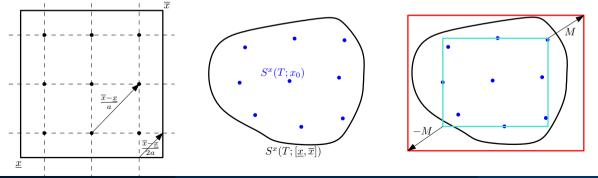
Second-order sensitivity reachable set:

$$S^{ imes x}(T) \in \int_0^T e^{[\underline{J^x},\overline{J^x}]*t} dt * [\underline{B},\overline{B}]$$

Step 3: First-order sensitivity set

Guaranteed over-approximation of $S^{x}(T; [\underline{x}, \overline{x}])$ from sampling

- Uniform grid sampling of interval of initial states (a samples per dimension)
- Evaluation of $S^{\times}(T; x_0)$ for each sample x_0
- Interval hull of sampled sensitivity evaluations
- Expand hull by $M = \max\left(|\underline{S^{xx}}|, |\overline{S^{xx}}|\right) * (I_n \otimes (\mathbf{1}_n * \frac{\|\overline{\mathbf{x}} \underline{\mathbf{x}}\|_{\infty}}{2a}))$



Pierre-Jean Meyer (UC Berkeley)

Interval Reachability Analysis using Second-Order Sensitivity

Step 4: Reachable set of the continuous-time system

Discrete-time mixed-monotonicity²

- applied to sampled-data system $x^+ = x(T; x_0)$
- using first-order sensitivity bounds $S^{x}(T; x_0) \in [\underline{S^{x}}, \overline{S^{x}}]$ (centered on S^{x*})

Auxiliary function g:X imes X o X

•
$$g_i(x, y) = x_i(T; z^i) + \alpha^i(x - y)$$

• with state $z^i = [z_1^i; \ldots; z_n^i] \in \mathbb{R}^n$ and row vector $\alpha^i = [\alpha_1^i, \ldots, \alpha_n^i] \in \mathbb{R}^{1 \times n}$
 $(z_j^i, \alpha_j^i) = \begin{cases} (x_j, \max(0, -\underline{S}_{ij}^{\times})) & \text{if } S_{ij}^{\times *} \ge 0, \\ (y_j, \max(0, \overline{S}_{ij}^{\times})) & \text{if } S_{ij}^{\times *} < 0. \end{cases}$

Theorem (Final reachable set)

 $x(T; [\underline{x}, \overline{x}]) \subseteq [g(\underline{x}, \overline{x}), g(\overline{x}, \underline{x})]$

²Meyer, Coogan and Arcak, *IEEE Control Systems Letters*, 2018

Pierre-Jean Meyer (UC Berkeley)

Interval Reachability Analysis using Second-Order Sensitivity

Alternative 1-step approaches³ to bound $S^{x}(T, [\underline{x}, \overline{x}])$

- Interval analysis on $\dot{S}^{x} = J^{x} * S^{x}$
- Random sampling of $S^{\times}(\mathcal{T}, x_0)$ without bounds on $S^{\times \times}$

	Interval analysis	Sampling	3-step approach
OA guarantees	yes	no	yes
Conservativeness	large	small	tunable
Complexity	low	high	tunable
Requirements	$[\underline{J^{\times}}, \overline{J^{\times}}]$	none	$[\underline{J^{x}}, \overline{J^{x}}], [\underline{J^{xx}}, \overline{J^{xx}}]$

³Meyer, Coogan and Arcak, *IEEE Control Systems Letters*, 2018

Simulation results

Unicycle with constant uncertainties

..... Interval arithmetics (single step) Sampling and falsification $\dot{x} = \begin{pmatrix} v \cos(x_3) + x_4 \\ v \sin(x_3) + x_5 \\ \omega + x_6 \\ 0 \end{pmatrix}$ 5×33 - 3 n - 1 -3 -2 2 -1 0 S^x_{1.3} Interval analysis Random sampling 3-step approach Samples N 64 729 64 Computation time for $[S^{\times}, \overline{S^{\times}}]$ 0.35 s 0.44 s 3.1 s 3.2 s 36 s

З г

 Algorithm 1, N=1 ----- Algorithm 1, N=2ⁿ Algorithm 1, N=3ⁿ

- Interval over-approximation for the reachable set of continuous-time systems
- Based on discrete-time mixed-monotonicity
- 3-step bounding of sensitivity matrix, with tunable complexity/conservativeness

Future work

• Include this new method to the Matlab toolbox TIRA⁴

Contact: pjmeyer@berkeley.edu

⁴Toolbox for Interval Reachability Analysis: https://gitlab.com/pj_meyer/TIRA Pierre-Jean Meyer (UC Berkeley) Interval Reachability Analysis using Second-Order Sensitivity