Continuous and discrete abstractions for planning applied to ship docking

Pierre-Jean Meyer, He Yin, Murat Arcak (UC Berkeley) Astrid Brodtkorb, Asgeir Sørensen (NTNU)

Norwegian University of Science and Technology

IFAC 2020

Motivation

Problem definition

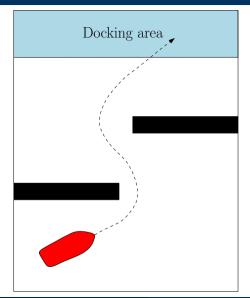
- Nonlinear system: $\dot{x} = f(x, u, w)$
- Reach-Avoid-Stay specification

Application to ship docking

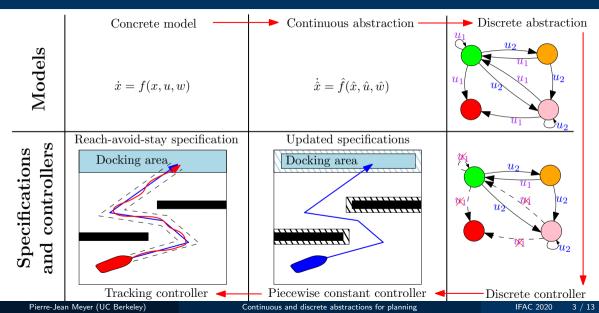
- Reach then stay in docking area
- Avoid obstacles

Correct-by-construction approach

- Offline path planning and formal methods
- Formal guarantees
- Reduced need for simulation-based testing



Overview



Continuous abstraction - Error definition

Error
$$e = x - \left(P\begin{bmatrix} \hat{x} \\ \hat{u} \end{bmatrix} + \Omega\right)$$
 between systems $\dot{x} = f(x, u, w)$ and $\dot{\hat{x}} = \hat{f}(\hat{x}, \hat{u}, \hat{w})$

- Novelty: depends explicitly on abstract input \hat{u}
- Error dynamics: $\dot{e} = f_e(e, \hat{x}, u, \hat{u}, w, \hat{w})$
- **Goal**: tracking controller $u(t) = \kappa(t, e(t), \hat{x}(t), \hat{u}(t))$ to bound the error around 0

Challenge: discrete abstraction creates **piecewise constant control input** \hat{u}

- bound error for constant \hat{u}
- bound error for jumps $\Delta \hat{u}$



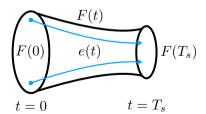
Continuous abstraction - Bounding the error

Key idea: bound a Lyapunov function V(t, e) by some constant $\gamma \in \mathbb{R}$ \rightarrow define funnel $F(t) := \{e : V(t, e) \le \gamma\}$ of allowed errors trajectories

Bounding error flow with constant \hat{u}

• Constraints on $\kappa(t,e(t),\hat{x}(t),\hat{u}(t))$ and V(t,e) such that

$$e(0) \in F(0) \Longrightarrow \forall t \in [0, T_s), e(t) \in F(t)$$



Continuous abstraction - Bounding the error

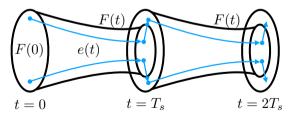
Key idea: bound a Lyapunov function V(t,e) by some constant $\gamma \in \mathbb{R}$

 \rightarrow define funnel $F(t) := \{e : V(t, e) \le \gamma\}$ of allowed errors trajectories

Bounding error jumps

• Additional constraint on $V(T_s, e(T_s))$ such that

$$e(T_s^-) \in F(T_s) \Longrightarrow e(T_s^+) \in F(0)$$



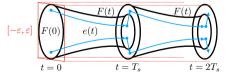
Main result: such choices of κ and V ensure $e(0) \in F(0) \Longrightarrow \forall t > 0, e(t) \in F(t)$

$$e(0) \in F(0) \Longrightarrow \forall t \geq 0, e(t) \in F(t)$$

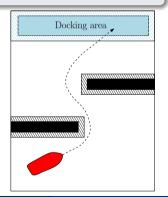
Continuous abstraction - SOS programming

Assumption

- Concrete system $\dot{x} = f(x, u, w)$ is control affine
- Error dynamics $\dot{e} = f_e(e, \hat{x}, u, \hat{u}, w, \hat{w})$ are polynomial
- State and input constraints \hat{X} , \hat{U} , $\Delta \hat{U}$, W, \hat{W} are semi-algebraic sets
- Restrict V and κ to polynomial functions
- SOS optimization problem to minimize the funnel volume
- ullet Bound the funnel by an interval [-arepsilon, arepsilon]



• Update reach-avoid-stay specifications



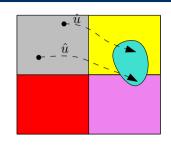
Discrete abstraction

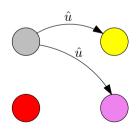
Discretization of $\dot{\hat{x}} = \hat{f}(\hat{x}, \hat{u}, \hat{w})$

- \bullet Time: fixed sampling time T_s
- ullet Input: finite discretization of \hat{U}
- State: uniform partition of \hat{X}

Discrete transitions

- Reachability analysis on $\dot{\hat{x}} = \hat{f}(\hat{x}, \hat{u}, \hat{w})$
- Reachable set over-approximated by an interval ¹



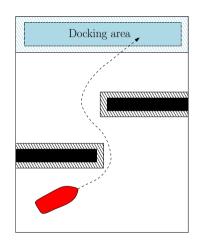


¹Meyer, Devonport, Arcak. TIRA: Toolbox for Interval Reachability Analysis, HSCC 2019

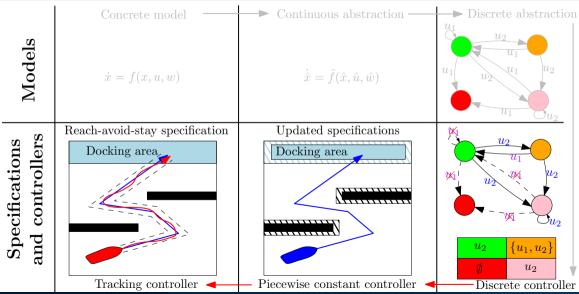
Discrete control synthesis

2-step synthesis

- Safety game: STAY in target set
 - initialize safe set as target set
 - iteratively remove states that cannot be kept inside safe set
- Reachability game: REACH safe subset of target set
 - initialize reach set as safe set
 - iteratively add states
 that can be brought to reach set in a single step
- (AVOID specification handled during abstraction creation)



Controller refinement



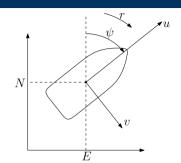
Models of a marine vessel

6D concrete model

- States: 3 positions (N, E, ψ) , 3 velocities (u, v, r)
- Inputs: thrusts
- Disturbances: currents + wind

3D continuous abstraction

- States: 3 positions
- Inputs: 3 velocities
- Disturbances: currents



Ship abstractions and synthesis

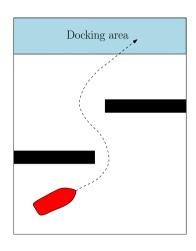
Continuous abstraction procedure

- Error on positions and velocities: $e = x \begin{pmatrix} \hat{x} \\ \hat{u} \end{pmatrix}$
- Computation of tracking controller and error bounds: 6 min

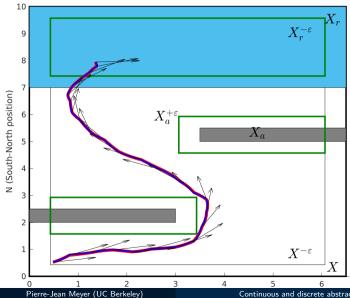
Discrete abstraction procedure

- Sampling period: 3 s
- Control discretization into 729 values (9³)
- State partition into 125000 cells (50³)
- Computation times: abstraction 10 s, synthesis 15 h

Results: 93% of state space is controllable



Simulation results



Concrete model Continuous abstraction Black arrows: ship heading

Good tracking despite conservative error bound

Conclusions

- Formal control synthesis for reach-avoid-stay problems
- Combining continuous and discrete abstractions
- Makes discrete abstraction applicable to larger systems

Current efforts: experimental validation on model ship at NTNU

Marine Cybernetics Laboratory, NTNU