Reachability analysis of neural networks using mixed monotonicity

Pierre-Jean Meyer

Université Gustave Eiffel

7th of December 2022

Motivation: robustness of image classification

Reachability analysis: does the set of all reachable outputs spans more than one class ?

Pierre-Jean Meyer (Univ Eiffel, Lille)

-			
	nnf	DY.	
		.0^	

NN reachability

Neural networks

L-layer feedforward neural network

$$x^{i} = \Phi(W^{i}x^{i-1} + b^{i}), \ \forall i$$

Context	Activation functions	NN reachability	N	lumerical comparisons
Neural netw	orks			
L-layer feedforw	ard neural network			 ▼
$x^i =$	$\Phi(W^i x^{i-1} + b^i), \forall$	/i	Layer	i i - 1
				x^{i-1}
Reachability pr	oblem		Layer i	v v
Given the input over-approximat	interval $[\underline{x^0}, \overline{x^0}]$, fin ion $[\underline{x^L}, \overline{x^L}]$ of the c	d an interval output set:	Affine tran $x \to W$	sformation $x^{i}x + b^{i}$
$\{x^L \mid x$	$x^0 \in [\underline{x^0}, \overline{x^0}] \} \subseteq [\underline{x^L},$	$\overline{x^{L}}$].	$\begin{array}{c} \text{Activation} \\ x \rightarrow \end{array}$	$\begin{array}{c} \text{n function} \\ \Phi(x) \end{array}$
•	Over-app	Dutput set	Layer	x^i

Mixed-monotonicity reachability analysis

$$y = f(x), x \in \mathbb{R}^n, y \in \mathbb{R}^m$$

Assumption

$$f'(x) \in [\underline{J}, \overline{J}] \subseteq \mathbb{R}^{m \times n}, \ \forall x \in [\underline{x}, \overline{x}]$$

Let J^* be the center of $[\underline{J}, \overline{J}]$

Proposition

$$f_i(x) \in \left[f_i(\underline{z^i}) - |\alpha^i|(\overline{x} - \underline{x}), f_i(\overline{z^i}) + |\alpha^i|(\overline{x} - \underline{x})\right], \ \forall i \in \{1, \dots, m\}$$

where $\underline{z^{i}}, \overline{z^{i}} \in \mathbb{R}^{n}$ and $\alpha^{i} \in \mathbb{R}^{1 \times n}$ such that $\forall j \in \{1, \dots, n\}$,

$$(\underline{z^{i}}_{j}, \overline{z^{i}}_{j}, \alpha^{i}_{j}) = \begin{cases} (\underline{x}_{j}, \overline{x}_{j}, \min(0, \underline{J}_{ij})) & \text{if } J^{*}_{ij} \geq 0, \\ (\overline{x}_{j}, \underline{x}_{j}, \max(0, \overline{J}_{ij})) & \text{if } J^{*}_{ij} \leq 0. \end{cases}$$

Bounding the derivative of the network

Goal: bounding the derivative of the network

Layer *i*:

$$x^i = \Phi(W^i x^{i-1} + b^i)$$

Derivative of layer i:

$$\Phi'(W^ix^{i-1}+b^i)*W^i$$

Proposition

If Φ is continuous, the derivative of the whole neural network is bounded.

Main challenge: how to compute the bounds on the derivative of the activation function ?

Bounding the derivative of the activation function

Subclass of activation functions whose derivative is:

- non-increasing until global min $\Phi'(\underline{v})$
- non-decreasing until global max $\Phi'(\overline{\nu})$
- non-increasing

Bounding the derivative of the activation function

Subclass of activation functions whose derivative is:

- non-increasing until global min $\Phi'(\underline{v})$
- non-decreasing until global max $\Phi'(\overline{v})$
- non-increasing

Bounding function for Φ' created just from knowing $\underline{\nu}$ and $\overline{\nu}$

$$\min_{x \in [\underline{x}, \overline{x}]} \Phi'(x) = \begin{cases} \Phi'(\underline{v}) & \text{if } \underline{v} \in [\underline{x}, \overline{x}] \\ \min(\Phi'(\underline{x}), \Phi'(\overline{x})) & \text{else} \end{cases}$$

Context	Activation fun	ctions	NN reacha	bility	Numerica	I comparisons
Intermed	iate decom	positions				
One subs	system per laye	er				
1	2 3		5	••••	<u>(– 1</u>	L
Whole ne	etwork as a sin	gle system				
	2 3	4	5			L
Intermed	iate decompos	ition				
1 (2 3	4	5	••••		L

Challenge: which decomposition gives the tightest results ?

r	~	-	~		٠
L	υ		e,	×.	

NN reachability

Main algorithm

Partial networks ending at layer i

- 1 for layer 1
- 2 for layer 2

Intersection of two over-approximations \rightarrow tighter over-approximation

Main algorithm

Partial networks ending at layer *i*

- 1 for layer 1
- 2 for layer 2
- 3 for layer 3

• . . .

Complexity in the network depth *L* Reachability analysis applied to

 $\frac{L(L+1)}{2}$ partial networks

Tighter output bounds than with any specific layer decomposition

u,

Numerical comparisons

Compared methods

- IBP
- ReluVal
- Neurify
- VeriNet
- CROWN

l_x

Linear relaxations of activation functions y_{+}

Existing benchmarks (2021 VNN competition)

- Tighter than IBP
- VeriNet/CROWN fail on Sigmoid

Neurify VeriNet

CROWN

70.4%

70.4%

100%

Context	Activation functions	NN reachability	Nun	nerical comparisons
Random net	tworks - Setup			
Limitations of	benchmarks	# of NN	Small NN 10000	Large NN 1000
Only 2 speOnly popu	ecific networks lar activations	Depth Input width Hidden width Output width	1-5 1-10 1-30 1-10	5-10 500-1000 100-200 10-50

Activation	ReLU	TanH	ELU	SiLU
	PW affine	S-shaped	Monotone	Non-monotone
ReluVal				
Neurify				
VeriNet				
CROWN				
IBP				
Mixed-mono				

Pierre-Jean Meyer (Univ Eiffel, Lille) Reach

Random networks - Results

Computation time

- IBP/VeriNet: fastest + time per neuron is size-independent
- Small NN: Mixed-monotonicity is the slowest
- Large NN: ReluVal/Neurify are the slowest

Width of over-approximation

- Always tighter than (or equal to) IBP
- None of the other 5 is always better than the others
- Large ReLU NN: mostly looser
- Large TanH NN: mostly equal (approximate saturations)
- Large ELU NN
 - tighter than VeriNet in 98% cases (79% strictly)
 - CROWN always fails (too conservative)

Conclusions

New reachability method for neural networks

- Generality: applicable to any continuous activation function
 → can consider new and more performant non-monotone activation
- Performances: good complementarity with other tools
- Complexity: main limitation, especially on smaller networks

Perspectives

- $\bullet\,$ Combine the reachability analysis with iterative refinement $\rightarrow\,$ full verification tool
- \bullet Reachability with respect to uncertainty on the network parameters \rightarrow safe training, network repair

Contact: pierre-jean.meyer@univ-eiffel.fr

Mixed monotonicity - Illustration

$$sign (J^{*}) = \begin{pmatrix} + & + \\ - & + \end{pmatrix} \qquad \alpha^{1} = \begin{pmatrix} 0 & \underline{J}_{12} \end{pmatrix}$$

$$\alpha^{2} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Dimension 1:

$$\frac{f_{1}([\underline{x}, \overline{x}]) = f_{1}(\underline{z}^{1}) - |\underline{J}_{12}|(\overline{x}_{2} - \underline{x}_{2})$$

$$\underline{f}_{1}([\underline{x}, \overline{x}]) = f_{1}(\overline{z}^{1}) + |\underline{J}_{12}|(\overline{x}_{2} - \underline{x}_{2})$$

$$\underline{z}^{1} = \begin{pmatrix} \underline{x}_{1} \\ \underline{x}_{2} \end{pmatrix} \quad \overline{z}^{1} = \begin{pmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{pmatrix}$$

$$sign (J^*) = \begin{pmatrix} + & + \\ - & + \end{pmatrix} \qquad \begin{array}{l} \alpha^1 &= & (0 \quad \underline{J}_{12}) \\ \alpha^2 &= & (0 \quad 0) \end{array}$$

Dimension 2:
$$\underline{f_2}([\underline{x}, \overline{x}]) = f_2(\underline{z}^2) + 0$$

$$\underline{z}^2 = \begin{pmatrix} \overline{x}_1 \\ \underline{x}_2 \end{pmatrix} \quad \overline{z}^2 = \begin{pmatrix} \underline{x}_1 \\ \overline{x}_2 \end{pmatrix}$$

Activation function ReLU (piecewise affine)

$$\Phi(x) = \max(0, x)$$

$$\Phi'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

$$\underline{v} = -\infty$$
 $\Phi'(\underline{v}) = 0$
 $\overline{v} = +\infty$ $\Phi'(\overline{v}) = 1$

Activation function Hyperbolic tangent (S-shaped)

$$\Phi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\Phi'(x) = 1 - \Phi(x)^2$$

$$\underline{v} = -\infty$$
 $\Phi'(\underline{v}) = 0$
 $\overline{v} = 0$ $\Phi'(\overline{v}) = 1$

Activation function ELU (monotone)

$$\Phi(x) = \begin{cases} e^x - 1 & \text{if } x < 0\\ x & \text{if } x > 0 \end{cases}$$

$$\Phi'(x) = egin{cases} e^x & ext{if } x \leq 0 \ 1 & ext{if } x \geq 0 \end{cases}$$

$$\underline{v} = -\infty$$
 $\Phi'(\underline{v}) = 0$
 $\overline{v} = +\infty$ $\Phi'(\overline{v}) = 1$

Activation function SiLU (non-monotone)

$$\Phi(x) = \frac{x}{1 + e^{-x}}$$

$$\Phi'(x) = \frac{1 + e^{-x} + xe^{-x}}{(1 + e^{-x})^2}$$

Activation function Binary step (discontinuous)

$$\Phi(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

Derivative

$$\Phi'(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ +\infty & \text{if } x = 0 \end{cases}$$

Unbounded

Activation function Gaussian (non-monotone)

$$\Phi(x) = e^{-x^2}$$

Derivative

$$\Phi'(x) = -2xe^{-x^2}$$

Only $-\Phi'$ has the correct shape

Reachability analysis: layer by layer

Layer 1

- Input interval: $[\underline{x^0}, \overline{x^0}]$
- Layer description: $x^1 = \Phi(W^1x^0 + b^1)$
- Layer derivative: $\Phi'(W^1x^0 + b^1) * W^1$
- Output over-approximation: $[\underline{x^1}, \overline{x^1}]$
- **Strength**: good approximation for isolated layer **Weakness**: lose input dependency

Reachability analysis: whole network

Whole neural network

- Input interval: $[\underline{x^0}, \overline{x^0}]$
- System: $x^i = \Phi(W^i x^{i-1} + b^i), \ \forall i$
- Derivative: $\prod_{i=1}^{L} \Phi'(W^i x^{i-1} + b^i) * W^i$
- Output over-approximation: $[\underline{x^{L}}, \overline{x^{L}}]$

Strength: preserve input dependency **Weakness**: conservative derivative bounds

Method	ReLU-2	ReLU-4	ReLU -6	Sigmoid-6
IBP	0.012	0.019	0.025	0.016
ReluVal	42	62	85	-
Neurify	43	62	84	-
VeriNet	0.012	0.019	0.026	0.017
CROWN	0.78	4.1	10	5.7
Mixed-Monotonicity	15	36	69	39

Table: Average computation time per network in s

Method	ReLU-2	ReLU-4	ReLU-6	Sigmoid-6
IBP	100%	100%	100%	100%
ReluVal	80%	74.8%	65.6%	-
Neurify	72.4%	72%	58.8%	-
VeriNet	70.4%	54%	15.6%	100%
CROWN	70.4%	54%	15.6%	100%

Table: Proportion of networks where our bounds are tighter or equal to others

Method	ReLU	TanH	ELU	SiLU
IBP	12	18	11	(13)
ReluVal	29	-	-	-
Neurify	27	-	-	-
VeriNet	14	33	(25)	-
CROWN	199	213	(177)	-
Mixed-Monotonicity	591	462	550	543

Table: Average computation time (per neuron in the network) in μs

Small random networks - width

Method	ReLU	TanH	ELU	SiLU
IBP	100%	100%	100%	(100%)
ReluVal	68%	-	-	-
Neurify	46%	-	-	-
VeriNet	43%	32%	(40%)	-
CROWN	43%	31%	(38%)	-

Table: Proportion of networks where our bounds are tighter or equal to others

Method	ReLU	TanH	ELU	SiLU
IBP	73%	71%	79%	(79%)
ReluVal	36%	-	-	-
Neurify	16%	-	-	-
VeriNet	12%	11%	(19%)	-
CROWN	12%	10%	(17%)	-

Table: Proportion of networks where our bounds are strictly tighter than others

Method	ReLU	TanH	ELU	SiLU
IBP	0.016	0.018	0.016	(0.018)
ReluVal	44	-	-	-
Neurify	44	-	-	-
VeriNet	0.034	0.05	(0.037)	-
CROWN	4.8	4.8	(4.8)	-
Mixed-Monotonicity	33	29	34	33

Table: Average computation time (per neuron in the network) in ms

Large random networks - width

Method	ReLU	TanH	ELU	SiLU
IBP	100%	100%	100%	(100%)
ReluVal	100%	-	-	-
Neurify	2%	-	-	-
VeriNet	0.1%	100%	(98%)	-
CROWN	0.1%	100%	(100%)	-

Table: Proportion of networks where our bounds are tighter or equal to others

Method	ReLU	TanH	ELU	SiLU
IBP	0%	0%	0%	(0%)
ReluVal	0%	-	-	-
Neurify	0%	-	-	-
VeriNet	0%	0%	(79%)	-
CROWN	0%	2%	(100%)	-

Table: Proportion of networks where our bounds are strictly tighter than others