Reachability Analysis of Neural Networks with Uncertain Parameters

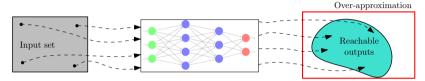
Pierre-Jean Meyer

11th of July 2023

Motivations	MM reachability	ESIP reachability	Uncertain NN	Simulations
Motivations				

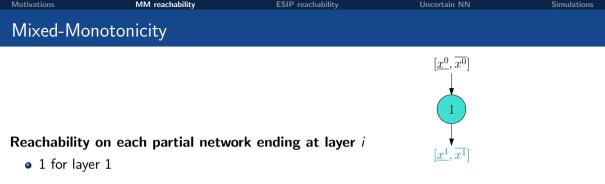
Formal verification of pre-trained NN

 Many tools based on reachability analysis: ReluVal, Neurify, VeriNet, CROWN, ...



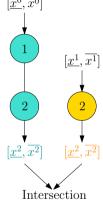
This paper: reachability analysis of uncertain NN

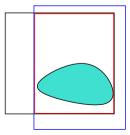
- MMRANN (Meyer, LCSS 2022)
 - Mixed-Monotonicity reachability analysis
 - Requirements: bounded activation function derivative
- ESIP (Neurify; VeriNet; Henriksen, ECAI 2020)
 - Linear bounding functions propagated through the layers
 - Requirements: linear relaxation of nonlinear activation function



Reachability on each partial network ending at layer *i*

- 1 for layer 1
- 2 for layer 2





Intersection of two over-approximations

 \rightarrow tighter over-approximation

Motivations	MM reachability	ESIP reachability	Uncertain NN	Simulations	
Mixed-Monotonicity					

Reachability on each partial network ending at layer *i*

- 1 for layer 1
- 2 for layer 2
- 3 for layer 3

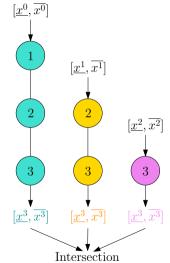
o . . .

Stength: generality

• applicable to NN with any continuous activation function

Weakness: polynomial complexity in the network depth L

• $\frac{L(L+1)}{2}$ reachability computations



Error-based Symbolic Interval Propagation

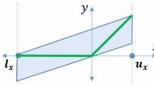
Symbolic Interval Propagation

 \rightarrow 2 linear functions of x^0 bounding the layers output

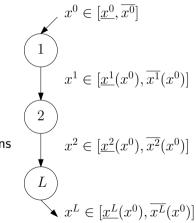
Error-based Symbolic Interval Propagation \rightarrow Single linear function and an error matrix

Linear bounding functions

- Deals well with the NN's linear transformations
- Needs linear relaxation of the nonlinear activation functions



Stength: low complexity **Weakness**: limited to few activation functions (ReLU, sigmoid)



Comparison on pre-trained networks

Comparisons on MNIST benchmarks and random networks¹

• Generality: MM natively handles all continuous activation function

-	Generally.	invi nacively	nanales an continuous activation function		
	Activation	ReLU	TanH	ELU	SiLU
		PW affine	S-shaped	Monotone	Non-monotone
	ESIP				
	MM				

• Tightness

- Complementarity on small ReLU networks
- ESIP better on large ReLU networks
- ESIP fails on large non-ReLU networks
- Complexity: ESIP 10 to 1000 times faster

¹Meyer, LCSS 2022

Mixed-monotonicity on uncertain NN

Larger set of uncertain variables

- Network's input x^0
- Weight matrices W^i and bias vectors b^i for all layers i

Minor algorithm updates

• Affine transformation computed with interval arithmetics

$$[\underline{W^{i}}, \overline{W^{i}}] * [\underline{x^{i-1}}, \overline{x^{i-1}}] + [\underline{b^{i}}, \overline{b^{i}}]$$

• Bounding the derivative of the partial network \rightarrow derivative with respect to all uncertainties

MM reachability

ESIP reachability

ESIP on uncertain NN

Uncertainty only on input x^0

- Linear function of x^0
- Error matrix E

Uncertainty also on W^i and b^i for all i

• Multi-linear function with input size growing after each layer

 $[x^0, W^1, b^1, \ldots, W^i, b^i]$

• Error **interval** matrix $[\underline{E}, \overline{E}]$

Implementation of the symbolic equation

• Store the factor for each multi-linear term

• Layer *i*: stored in $n_i \times (n_0 + 1)$ matrix

 $n \times \left(\frac{1-n^{2L+2}}{1-n}\right)$

• Exponential complexity in the depth L

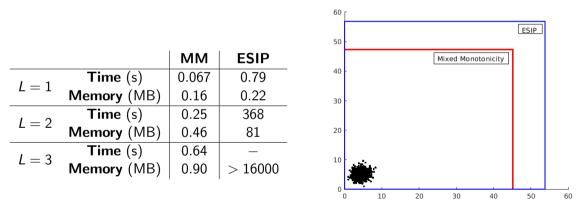
• Polynomial complexity in the width n

Reachability of uncertain neural networks

IFAC 2023 7 / 11

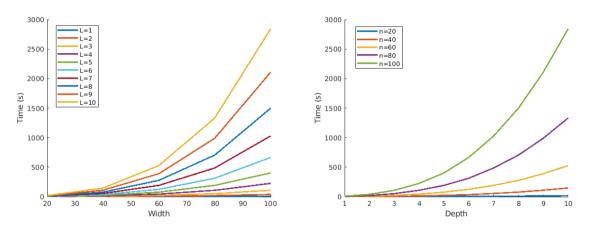
Numerical comparisons on random uncertain ReLU NN

ReLU networks with 20 neurons per layer



Over-approximation comparison for L = 2

Mixed-monotonicity on random SiLU networks



Computation time: polynomial complexity $O(n^3 * L^3)$ in the width *n* and depth *L*

Motivations

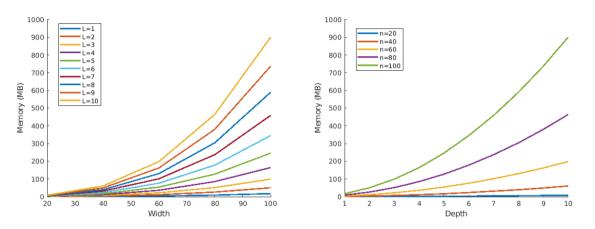
MM reachability

ESIP reachability

Uncertain NN

Simulations

Mixed-monotonicity on random SiLU networks



Memory usage: polynomial complexity $O(n^3 * L^2)$ in the width *n* and depth *L*

Motivations	MM reachability	ESIP reachability	Uncertain NN	Simulations
Conclusion				

	Uncertain input	Uncertain weight/bias
Complexity (time, memory)	ESIP	Mixed Monotonicity
Generality (activation functions)	Mixed Monotonicity	Mixed Monotonicity
Tightness of over-approximations	Complementary	Mixed Monotonicity

Future work

- Safe training
- Network repair

Contact: pierre-jean.meyer@univ-eiffel.fr