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Abstract

In this work, a procedure to apply iterative learning control to a nonlinear,
continuous-time system is developed, where the control goal is the tracking
of a reference trajectory. Iterative learning control updates the input signal to
a system that performs a task repeatedly by using the gathered information
of past completions of the task. The proposed procedure is motivated by the
task of human-machine cooperation in the sense that a human has to learn
how to collaborate with a machine. For example, a human with paraplegia
needs to cooperate with their powered lower limb orthoses in order to stand
up from the sitting position. The human learning is emulated by iterative
learning control, therefore a simple proportional-derivative input update
law is chosen. This update law features a proportional and a derivative
gain, the learning gains, which have to be selected in each iteration of
the learning process to facilitate learning. The learning gains are chosen by
using reinforcement learning, selecting the gains that minimise a policy value
function, which depends on the predicted tracking error and the change
in the input signal and defines the performance of the system. Thus, the
proposed procedure is as follows: In each iteration of the learning process,
the open-loop input signal is applied to the system and the tracking error
is recorded. Then, the learning gains are chosen such that the resulting
updated input minimises the policy value function. Subsequently, the input
signal is updated with the optimal learning gains and again applied to the
system, yielding a new tracking error and the steps are repeated. For a
specific choice of the policy value function, the tracking improves in each
iteration if the optimal learning gains are non-zero. Additionally, if they
are zero, the procedure can be stopped, because all future optimal gains
will also be zero. To facilitate the use of second-order optimisation methods,
conditions on the system and the initial input signal are provided which
guarantee the existence and continuity of the first and second derivatives
of the policy value function. The procedure is successfully tested on two
examples related to the human-machine cooperation as described above.
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Deutsche Kurzfassung

In dieser Arbeit wird ein Vorgehen vorgestellt, welches iterative learning
control auf ein nichtlineares, zeitkontinuierliches System anwendet, mit dem
Regelziel einer Referenztrajektorie zu folgen. Iterative learning control verän-
dert das Eingangssignal eines Systems, das eine Aufgabe mehrmals ausführt,
mithilfe von Informationen aus vorangehenden Ausführungen. Das vorge-
schlagene Vorgehen ist motiviert durch eine Mensch-Maschine Kooperation
in welcher ein Mensch mit einer Maschine zusammenarbeiten muss. Zum
Beispiel muss ein eine Orthese tragender, querschnittgelähmter Mensch mit
dieser kooperieren, um aus dem Sitzen aufstehen zu können. Das menschli-
che Lernen wird durch iterative learning control ersetzt, weshalb ein einfaches
proportionales und differenzierendes Aktualisierungsgesetz für das Ein-
gangssignal gewählt wird. Dieses Aktualisierungsgesetz beinhaltet einen
proportionalen und einen differenzierenden Koeffizienten, die Lernkoeffizi-
enten, welche in jeder Iteration angepasst werden müssen, um einen Lern-
prozess zu ermöglichen. Diese Lernkoeffizienten werden durch reinforcement
learning gewählt, so dass eine Kostenfunktion minimiert wird, welche von
dem prädizierten Folgefehler und der Änderung im Eingangssignal abhängt.
Das Vorgehen ist wie folgt: In jeder Iteration des Lernprozesses wird das Sys-
tem mit dem Eingangssignal angesteuert und der resultierende Folgefehler
aufgenommen. Dann werden die Lernkoeffizienten so gewählt, dass sie die
Kostenfunktion minimieren und das Eingangssignal wird damit aktualisiert.
Dieses wird dann für den nächsten Durchlauf verwendet und die Schritte
werden wiederholt. Für eine bestimmte Wahl der Kostenfunktion verbessert
sich das Folgeverhalten des Systems in jeder Iteration solange die optimalen
Lernkoeffizienten nicht verschwinden. Sollten sie jedoch null sein, kann das
Vorgehen angehalten werden, weil alle darauf folgenden Lernkoeffizienten
ebenfalls verschwinden werden. Um den Einsatz von Optimierungsmetho-
den zweiter Ordnung zu ermöglichen, werden Voraussetzungen an das
System und das initialisierende Eingangssignal gestellt, welche die Existenz
und Stetigkeit der ersten und zweiten Ableitungen der Kostenfunktion ga-
rantieren. Das Vorgehen wird erfolgreich an zwei Beispielen getestet, die im
Rahmen der oben beschriebenen Mensch-Maschine-Kooperation liegen.
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1 Introduction

In our everyday lives, every human has to interact with a machine at some
point. Sometimes, however, mere interaction, like telling a machine what
to do, is not enough, sometimes a full cooperation between human and
machine acting simultaneously is necessary. Take for example a driver who
has to drive a car together with embedded control systems or alternatively
a paraplegic who has to cooperate with his orthoses in order to walk or
perform otherwise seemingly basic actions. This raises the question of
whether a human is able to learn how to collaborate with such a device.
For humans with paraplegia the simple task of standing up from a sitting
position poses a challenge and this sit-to-stand motion has to be learned
again by the user of powered orthoses [25]. A study with humans, however,
would go beyond the scope of this work and a suitable alternative which
acts as a substitute for the human needs to be found. Narvaez-Aroche et
al. investigate this cooperation for powered lower limb orthoses and use
iterative learning control (ILC) as an alternative for human learning. This
is reasonable, because ILC was motivated by human learning in the first
place and is also an approximation of the learning process [5]. Many of the
available results in ILC are in the domain of linear or nonlinear, discrete-time
systems [11]. Yet we all live in a continuous-time and nonlinear world. Hence,
an ILC scheme is needed that works for nonlinear, continuous-time systems
and appropriately represents human learning. In ILC, the input to the system
is updated iteratively and if this update is parameterised it may approximate
the human learning process [5]. It is, however, unclear how these parameters
can be chosen such that a human-machine cooperation can be emulated
for nonlinear, continuous-time systems. This is provided by tuning the
parameters of ILC using reinforcement learning (RL) in such a way as that
the future performance is improved and ultimately leads to the proposed
procedure that, in general, applies ILC to nonlinear, continuous-time systems,
whereas it is usually applied to nonlinear, discrete-time systems. This
human-machine cooperation can be described as follows: Consider a general
nonlinear system in continuous time which has at least two, or without loss
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1 Introduction

of generality, exactly two inputs

ẋ(t) = f (x(t), u1(t), u2(t)), (1.1)

for which a controller that uses both input channels u1(t) = K1(x(t)) and
u2(t) = K2(x(t)) to complete a specific task has been designed, but only one
of the two is actually implemented, leaving the second input open, i.e.

ẋ(t) = f (x(t), K1(x(t)), u2(t)). (1.2)

This second input u2(t) is now assumed by a human or as a substitute by an
iteratively learning controller which learns how to successfully cooperate
with the partially implemented controller K1(x(t)) such that the task can be
completed. This leads to the following, more general, problem statement.

1.1 Problem Statement

Given is the following nonlinear and continuous-time system

ẋ(t) = f (x(t), u(t)), (1.3a)

y(t) = h(x(t)), (1.3b)

x(t0) = xIC, (1.3c)

x ∈ Rn, u ∈ Rm, y ∈ Rq (1.3d)

that tracks a reference trajectory yd(t) ∈ Rq for t ∈ [t0, t f ]. This tracking
is done iteratively, always starting in the same initial position (1.3c) and
generates the tracking error

ej(t) = yj(t)− yd(t) (1.4)

in iteration j. The goal is to use parameter-tuned ILC, i.e. update the input
signal in each iteration j according to

uj+1(t) = uj(t) + Λj+1

[
ej(t)
ėj(t)

]
∀t ∈

[
t0, t f

]
(1.5)

to improve the performance of the tracking, that is the entire input signal
uj(t) is updated in each iteration. The performance is defined by the policy
value ρ∗j , which is the cost (or reward) in RL, where for this case the lesser
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1.2 Mathematical Notation

the policy value the better the performance. The learning gain Λj+1 is then
chosen by solving

Λ∗j+1 = arg min
Λj+1

ρj(Λj+1). (1.6)

Before a brief outline of the upcoming chapters is given, some notation is
defined.

1.2 Mathematical Notation

The following notation for various norms is used:

• For a vector v ∈ Rn with elements vi the infinity norm is defined as

‖v‖∞ := max
1≤i≤n

|vi|. (1.7)

For a matrix M ∈ Rm×n with elements mij the infinity norm is defined
as

‖M‖∞ := max
1≤i≤m

n

∑
j=1
|mij|. (1.8)

• For a vector-valued function f (t) ∈ Rn with elements fi(t) defined on
the interval t ∈ [t0, t f ] and a positive scalar λ > 0, the lambda norm is
defined as

‖ f ‖λ := sup
t0≤t≤t f

{
e−λt‖ f (t)‖∞

}
. (1.9)

• For a vector v ∈ Rn and a matrix M ∈ Rn×n the matrix-weighted
norm is defined as

‖v‖M :=
√

vT Mv. (1.10)

• For a function f (t) whose squared absolute value is Lebesgue inte-
grable over the interval t ∈ [a, b], the L2-norm is defined as

‖ f ‖2 :=
(∫ b

a
| f (t)|2 dt

)1/2

< ∞. (1.11)

The natural numbers with 0 included are denoted as

N0 = N∪ {0}. (1.12)
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1 Introduction

The derivative of the function f (x) : Rn → Rm with respect to the vector
x ∈ Rn is the m× n matrix

∂ f
∂x

=



∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

. . .
...

...
∂ fm
∂x1

. . . ∂ fm
∂xn

 . (1.13)

1.3 Outline

The concept of ILC is covered in the next chapter with an introduction to it
and some selected results. In the third chapter, ILC is combined with RL to
appropriately tune its parameters for nonlinear, continuous-time systems.
The presented learning scheme is subsequently applied to two examples in
the fourth chapter and the work is summarised in the fifth chapter. Finally,
some auxiliary, additional information is provided in the appendix.
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2 Iterative Learning Control

Before the approach on how to use ILC for nonlinear, continuous-time
system is introduced, a familiarity with ILC is beneficial. This chapter is
about the concept of ILC, giving a short introduction to it in the first section,
presenting some selected results and insights in the second section and
closing the chapter in the third section with a closer look on norm-optimal
ILC, which is a concept with particular relevance to the next chapter.

2.1 Introduction to Iterative Learning Control

When a system repeats the same task over and over again, it only seems
reasonable to use information gathered in past iterations to improve its
performance. This gives rise to ILC which improves the performance of a
system by learning from past iterations. The basic idea of ILC was described
earliest in a US patent filed in 1967 [24]. Nonetheless, it only received general
interest after publications in 1984 [8, 9], in which Arimoto et al. propose
an iterative “betterment process” to improve the tracking of a reference
trajectory for a robotic manipulator that performs a task recurrently.

In principle, ILC is closely related to human learning [5] and was moti-
vated by it [9]. For example, a tennis player observes the trajectory of the ball
after hitting it and subsequently adjusts his hitting motion if the ball struck
the net. Another example is a football player slightly changing her shooting
technique after missing the goal by an inch. In both examples repetition and
learning from past mistakes enables the players to learn a suitable movement
profile, saved in their (muscle) memory. This motion is principally a learned
open-loop signal, which can be applied to achieve a certain goal.

ILC is similar; a given input signal is updated after each repetition using
the error signal of last iterations until it converges to a signal that leads
to a good performance. Essentially, ILC is a model-free open loop control
strategy. This makes it especially useful in applications in which unmodelled
dynamics or uncertain parameters prevent the desired performance of a
controlled system. Of course, those applications have to satisfy certain

13



2 Iterative Learning Control

conditions, e.g. perform the same task repeatedly. Since ILC is a feedforward
controller, it is normally used with a well-designed feedback controller.

ILC is applied arguably the most in the area of robotics [6, 8–10, 12, 13,
15–18, 21, 31, 32, 34, 35], although it also finds application in rotary systems
[23, 30, 36], chemical processes [14, 37], bioengineering [5, 19] and many
more [1].

In general, ILC can be applied to systems that repeat a task starting in the
same initial value in each trial. This resetting of the initial condition is the
main difference to repetitive control in which the initial condition is the final
value of the previous iteration [11].

Because of its close relationship to human learning, ILC is a good pick
to emulate the very same. Arif and Inooka [5] have, in fact, experimentally
established a relationship between ILC and human learning. This corrob-
orates using the former in substituting the human in the human-machine
cooperation, as is done in [26].

2.2 Selected Results in Iterative Learning Control

Even though ILC is often used in discrete-time systems [11], the focus lies
here on the continuous-time case. The general concept in continuous-time
ILC is as follows: Consider a system

ẋ(t) = f (x(t), u(t)), (2.1a)

y(t) = h(x(t), u(t)) (2.1b)

with
x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq.

The control goal is to track a certain reference trajectory yd(t) ∈ Rq over
the finite time interval t ∈ [t0, t f ]; this is done repeatedly, starting in each
iteration j from the same initial position

xj(t0) = xIC ∀j ∈N0 (2.2)

and a tracking error can be defined as

ej(t) := yj(t)− yd(t). (2.3)

The index j adds the additional iteration domain; together with the time
domain this makes the problem at least 2-dimensional. The initial reset (2.2)
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2.2 Selected Results in Iterative Learning Control

xIC

delay

delay

uj(t)

uj−1(t)

ej−1(t)yd(t)
+

yj−1(t)

yj(t)

−
uj = g(uj−1, ej−1)

input update: plant:
ẋ = f (x, u)
y = h(x, u)
x(t0) = xIC

Figure 2.1: Block diagram of the general ILC concept. The input uj(t) to the
plant in iteration j is generated by updating the previous input uj−1(t) with
the error ej−1(t) of the previous iteration.

is a pivotal assumption of ILC; naturally some publications explore to
weaken it, e.g. [28] or [33].

At the start of the process, the initial input u0(t), usually chosen by the
user, generates an initial error e0(t). Then after each iteration j the new input
signal uj+1(t) is determined through an input update law which is normally
a function of the previous error

uj+1(t) = g(uj(t), ej(t)). (2.4)

The general concept of ILC is depicted in Figure 2.1. Unsurprisingly, certain
requirements have to be imposed on the general formulation (2.1) – (2.4) to
obtain any results regarding the behaviour of the ILC.

The aforementioned 2-dimensionality, that is the time and iteration do-
mains, of the ILC problem greatly increases the difficulty in analysing it.
Usually, the following properties are desired:

• Asymptotic stability in terms of ILC [1, 11], i.e. a bounded and
convergent input signal sequence

‖uj(t)‖ ≤ ū < ∞ ∀t ∈
[
t0, t f

]
, ∀j ∈N0,

lim
j→∞

uj(t) = u∞(t) ∀t ∈
[
t0, t f

]
.

15



2 Iterative Learning Control

• Convergence of the error [1, 11]

lim
j→∞

ej(t) = e∞(t) ∀t ∈
[
t0, t f

]
.

• A good transient learning behaviour, typically a monotonically con-
verging error [11]

‖ej(t)‖ ≤ ‖ej−1(t)‖ ∀j ∈N.

• Robustness typically related to uncertainty in the plant dynamics [11].

In [8] the linear time-invariant system

ẋj(t) = Axj(t) + Buj(t), (2.5a)

yj(t) = Cxj(t) (2.5b)

is considered. It is assumed that

yj, uj ∈ Rr

and
rank(CB) = r, (2.6)

that is the matrices C and B have full rank. Moreover, it is explicitly not
assumed that the system matrices are perfectly known, only that they are
constant and that the system is initialised with the same initial value in each
iteration. Then, Arimoto et al. propose a rule to update the input

uj+1(t) = uj(t)− Γėj(t) (2.7)

with the time derivative of the error (2.3) and an arbitrary constant r × r
matrix Γ. Using this update law they show that under the assumptions

1. ‖Ir − CBΓ‖∞ < 1,

2. u0(t) is continuous and yd(t) is continuously differentiable on t ∈
[0, T],

where Ir is the r× r identity matrix, there exist constants λ > 0 and 0 ≤ ρ < 1
such that

‖ėj+1‖λ ≤ ρ‖ėj‖λ ∀j ∈N0. (2.8)

16



2.3 Norm-Optimal Iterative Learning Control

A similar result guaranteeing that the output trajectory converges to the
reference trajectory holds for a class of nonlinear systems given by

ẋj(t) = f (t, xj(t)) + Buj(t), (2.9a)

yj(t) = Cxj(t) (2.9b)

with the same update law (2.7) and under certain conditions as outlined in
[8].

In a later publication [7], Arimoto proposes an enhanced input update law

uj+1(t) = uj(t)− Γėj(t)−Φej(t)−Ψ
∫

ej(t)dt, (2.10)

with a proportional, integrating and differentiating (PID) part, calling it a
“PID-type iterative algorithm". He then shows that for a class of linear time-
invariant systems it is enough to only use a suitable proportional learning
gain, that is Γ = Ψ = 0, to guarantee that the output yj(t) converges
to the reference yd(t) for each fixed t ∈ [t0, t f ] as j → ∞. In addition,
Arimoto proves analogous convergence theorems with the proportional and
differentiating (PD) update law

uj+1(t) = uj(t)− Γėj(t)−Φej(t) (2.11)

if certain conditions, as outlined in [7], are satisfied. This PD-type input up-
date law finds application especially for nonlinear systems [11], for example,
for the control of an electrohydraulic injection molding machine [20] or of
robotic manipulators [7, 9, 10, 12].

For all the above mentioned results on convergence, the choice of the
learning gains is critical. They have to be selected with respect to the system
dynamics and it is not immediately clear what a particularly good pick
would be. One way to circumvent this decision is provided by norm-optimal
iterative learning control.

2.3 Norm-Optimal Iterative Learning Control

In norm-optimal iterative learning control [2, 4, 27] the objective of ILC, i.e.
reducing the tracking error, is embedded into a cost criterion

Jj+1(uj+1(t)) = ‖ej+1(t)‖2
2 + ‖uj+1(t)− uj(t)‖2

2 (2.12)
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2 Iterative Learning Control

comprising the norm of the future error and the change in the input signal.
This norm is induced by the inner product of the Hilbert spaces containing
the output and input. In continuous time, usually the L2-norm is chosen.
Consider a general linear system model expressed as

yj+1(t) = Guj(t) + dj(t) (2.13)

where G is a bounded linear operator mapping the input space to the output
space and dj(t) represents initial conditions and other influences in iteration
j [27]. Then, the input in the next trial uj+1(t) is computed by minimising
the cost

uj+1(t) = arg min
u j+1(t)Jj+1 (2.14)

and the optimal control input in the next iteration is

uj+1(t) = uj(t) + G∗ej+1(t) (2.15)

where G∗ denotes the adjoint operator of G [2].
More explicitly, let G be given in state-space form

ẋj(t) = Axj(t) + Buj(t),

yj(t) = Cxj(t),

ej(t) = yd(t)− yj(t)

with t ∈ [0, T] and xj(0) = 0 and the cost as

Jj+1 =
∫ T

0
ej+1(t)TQej+1(t) + (uj+1(t)− uj(t))T R(uj+1(t)− uj(t))dt

+ eT
j+1(T)Fej+1(T). (2.16)

The seemingly non-causal update (2.15) can be realised using linear quadratic
regulator (LQR) theory [3]. The resulting input, as outlined in [3], is

uj+1(t) = uj(t) + R−1BT
(

K(t)(xj(t)− xj+1(t)) + ξ j+1(t)
)

(2.17)

with the feedback gain matrix K(t) as the solution of the Riccati differential
equation

K̇(t) = −ATK(t)− K(t)A + K(t)BR−1BTK(t)− CTQC, (2.18a)

K(T) = CT FC (2.18b)

18



2.3 Norm-Optimal Iterative Learning Control

and the predictive filter ξ j+1(t)

ξ̇ j+1(t) = −
(

A− BR−1BTK
)T

ξ j+1(t) + CTQej(t), (2.19a)

ξ j+1(T) = −CT Fej(T). (2.19b)

If, however, the transition into nonlinear systems is made, LQR theory
does no longer apply and finding an explicit input equation like (2.17) is
considerably harder. This gives rise to a modification of the optimisation
problem. Instead of minimising the cost (2.12) with respect to the input
signal uj+1(t), it is minimised with respect to the learning gains in the input
update law (2.10). Owens calls this approach “Parameter Optimal Iterative
Control” in his book [27] and discusses its properties in the linear case. In the
following, the focus lies on the nonlinear case and on using an appropriate
input update law that can reasonably resemble human learning.

19



2 Iterative Learning Control

20



3 Iterative Learning Control with Parameter
Tuning

After reviewing past results in ILC, a new approach to apply ILC to nonlinear,
continuous-time systems is proposed, which can also be used to examine
a possible collaboration between a human agent and a controller. This
procedure uses RL to tune the learning gains in a parameterised input
update law. In the first section, the framework is constructed and the
problem is cast in the light of RL. Moreover, some assumptions on human
learning are set out. The second section focuses on the policy value function,
a cost that is minimised in each iteration to find the learning gain, and its
properties. In the third section, the first and second derivatives of the policy
value function are calculated and conditions on the plant are imposed for
them to exist and be continuous.

3.1 Framework and General Assumptions on Human
Learning

Conceptually, ILC is a form of reinforcement learning. In each trial the agent,
i.e. the controller, selects a policy. After executing this policy, the agent
gathers some kind of feedback, called the reward or reinforcement [29] and
using this reinforcement, the agent then chooses the next policy. In ILC this
policy is the input signal for an iteration and the reward is, for example, the
resulting norm of the error. A function ρ which defines this reward is called
the policy value function [29]. In principle, ILC is then a kind of policy
search and Russel and Norvig [29] suitably describe the idea of both ILC
and policy search: “the idea is to keep twiddling the policy as long as its
performance improves, then stop.”

Before an appropriate policy is stated, the environment has to be defined.
From now on the plant is assumed to be from a class of deterministic,

21



3 Iterative Learning Control with Parameter Tuning

nonlinear systems described by

ẋ(t) = f (x(t), u(t)), (3.1a)

y(t) = h(x(t)), (3.1b)

x(t0) = xIC, (3.1c)

x ∈ Rn, u ∈ Rm, y ∈ Rq. (3.1d)

The objective is to track a defined reference trajectory yd(t) over the finite
time interval t ∈ [t0, t f ], generating a tracking error

e(t) = y(t)− yd(t). (3.2)

This is done iteratively while changing the input uj(t) in each iteration j
using ILC. It is assumed that the initially applied input u0(t) generates a
bounded error signal e0(t) = y0(t)− yd(t). In addition, the initial condition
is the same in each iteration, that is xj(t0) = xIC ∀j ∈N0.

The input update law is the policy the agent adopts between each trial,
and it is parameterised using a slight adaption of the familiar rule (2.7) of
Arimoto et al. [8]

uj+1(t) = uj(t) + Γj+1ej(t). (3.3)

In (3.3) the learning gain Γj+1 ∈ Rm×q may change from iteration to iteration.
This is because here ILC is used to substitute a human operator and it is
intuitive that a human would focus on different elements of the gathered
information from trial to trial. One might think of a tennis player focusing
first on the proper hitting spot on the racket for some tries before the focus
shifts on errors in the applied force. This assumption is further corroborated
by Arif and Inooka who state that the human “modifies the gains in each
iteration” [5].

The learning gain Γj is essentially what constitutes the policy in each
iteration and its choice should therefore depend on a suitable policy value
function ρ ≥ 0, i.e. the reward or cost resulting from using this policy. Here,
the policy value function is chosen as the cost-to-go, that is a measure of
the system’s deviation from the reference trajectory after updating the input
with the learning gain. Then the best policy is the one resulting in the
smallest policy value

ρ∗j = min
Γj

ρ(Γj), (3.4)

which is the optimal cost-to-go. The assumption is that if a learning gain
which improves the policy value is found, then a human is able to improve
and learn from the last try as well.
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3.1 Framework and General Assumptions on Human Learning

Instead of only using the information provided in the error signal in the
update rule (3.3), more could be included. As it turns out, a human also
learns from the information encompassed in the derivative of the error [5].
This leads to the familiar PD-type update law (2.11)

uj+1(t) = uj(t) + Γj+1ej(t) + ∆j+1 ėj(t)

= uj(t) +
[
Γj+1 ∆j+1

] [ej(t)
ėj(t)

]
= uj(t) + Λj+1 ẽj(t) (3.5)

with the learning gain matrix Λj+1 ∈ Rm×2q and the extended error ẽj.
It is immediately clear that this extended update law can be reduced to

(3.3) by choosing ∆j+1 = 0 as the zero matrix. Thus, the optimal policy
value in each iteration can only be better, i.e. smaller, if (3.5) is used instead
of (3.3).

In summary, the problem is

ρ∗j+1 = min
Λj+1

ρ(Λj+1) (3.6a)

subject to

j ∈N0, t ∈
[
t0, t f

]
, (3.6b)

uj+1(t) = uj(t) + Λj+1 ẽj(t) = uj(t) + Λj+1

[
ej(t)
ėj(t)

]
, (3.6c)

ẋj+1(t) = f (xj+1(t), uj+1(t)), (3.6d)

yj+1(t) = h(xj+1(t)), (3.6e)

ej+1(t) = yj+1(t)− yd(t) (3.6f)

and the main assumptions about human learning are:

• Human learning can be emulated by ILC.

• In each iteration a human applies an individual learning gain.

• If a learning gain that reduces the policy value, i.e. leads to a better
performance, can be found, a human will also be able to perform better
in the next iteration.

• A human learns from both the error and its derivative.
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3 Iterative Learning Control with Parameter Tuning

In Section 2.3, the optimisation problem (2.14)

uj+1 = arg min
uj+1

Jj+1

was solved for a linear system. Unfortunately, it is not as straightforward to
find a solution for this problem for a nonlinear system. The parameterised
input update law (3.6c), however, offers the advantage that the dimensional
complexity of the optimisation problem (3.6a) is reduced to the dimensions
of the learning gain Λj+1. While the policy value function ρ is an arbitrary
cost, a closed form will result in a standard optimisation problem [29] and
the next section will make it explicit.

3.2 Policy Value Function

From now on, the general time argument will be dropped for the sake of
brevity whenever possible. Nevertheless, it is worth noting that all time
signals are in continuous time and, for example, uj denotes the continuous-
time input signal in iteration j.

Although the policy value function can be defined arbitrarily, the following
LQR resembling cost, which is also used in the norm-optimal ILC scheme
presented in Section 2.3, will be the policy value function

ρj+1(Λj+1) =
∫ t f

t0

eT
j+1Eej+1 + (uj+1 − uj)

TU(uj+1 − uj)dt

+ eT
j+1(t f )Tej+1(t f ) (3.7)

where 0 ≤ E ∈ Rq×q, 0 ≤ U ∈ Rm×m and 0 ≤ T ∈ Rq×q are positive
semi-definite weighting matrices. This allows individual weighting of error
components, control over how much the input signal is changed in each
iteration and an additional emphasis on the terminal error.

The approach is now as follows:

1. In iteration j, apply the input uj.

2. Solve the optimisation problem (3.6)

ρ∗j+1 = min
Λj+1

ρ(Λj+1)

to determine the learning gain

Λ∗j+1 = arg min
Λj+1

ρ(Λj+1).
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3.2 Policy Value Function

3. Update the input according to the input update law (3.5)

uj+1 = uj + Λ∗j+1 ẽj.

4. Proceed to the next iteration (increment j and go to step 1).

This procedure has the following properties:

P1: The policy values are a monotonically decreasing sequence

ρ∗j+1 ≤ ρ∗j j ∈N0. (3.8)

P2: The following implications hold:

Λ∗j = 0⇒ Λ∗j+1 = 0 and ρ∗j+1 = ρ∗j ∀j ∈N (3.9)

and additionally

Λ∗j 6= 0 and U > 0⇒ ρ∗j+1 < ρ∗j ∀j ∈N, (3.10a)

Λ∗j+1 6= 0 and U = 0⇒ ρ∗j+1 < ρ∗j ∀j ∈N0. (3.10b)

P3: The policy values converge to a lower limit

lim
j→∞

ρj = ρ∞ ≥ 0. (3.11)

A consequence of P2 is that as soon as the solution of the optimisation
problem (3.6) is the zero matrix, the procedure can be stopped, because the
policy value cannot be improved in subsequent iterations. This is intuitive,
because no new information is gathered by repeating the same input. The
difference between (3.10a) and (3.10b) is because Λj = 0 with U > 0 always
reduces the policy value, that is ρj(Λj = 0) < ρ∗j−1, by not changing the
input signal and is only a technicality.

In the following proofs, the shortened notation of the matrix-weighted
norm is used, its definition is given in Section 1.2. In addition, e∗j = ej(Λ∗j )
denotes the error generated by the input u∗j = uj(Λ∗j ) which was obtained
by updating with the optimal learning gain Λ∗j .
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3 Iterative Learning Control with Parameter Tuning

Proof of P1: The difference between two consecutive policy values can be
estimated by using the fact that an optimal policy is at least as good as an
arbitrary one:

ρ∗j+1 − ρ∗j ≤ ρj+1(Λj+1 = 0)− ρ∗j

=
∫ t f

t0

‖ej+1(Λj+1 = 0)‖2
E + ‖ uj+1 − u∗j︸ ︷︷ ︸

= Λj+1|=0
ẽ∗j =0

‖2
U dt + ‖ej+1(Λj+1 = 0, t f )‖2

T

−
∫ t f

t0

‖e∗j ‖
2
E + ‖u∗j − u∗j−1‖

2
U dt− ‖e∗j (t f )‖2

T

= −
∫ t f

t0

‖u∗j − u∗j−1‖
2
U dt

≤ 0.

Note that if Λj+1 = 0 is chosen, no update takes place and the error signal
does not change, that is ej+1(Λj+1 = 0) ≡ e∗j .

Proof of P2: In order to show (3.9), let Λ∗j = 0 be the solution of (3.6) after
iteration j− 1 which is

Λ∗j = arg min
Λj

∫ t f

t0

‖ej‖2
E + ‖uj − u∗j−1‖

2
U dt + ‖ej(t f )‖2

T

= arg min
Λj

∫ t f

t0

‖ej‖2
E + ‖Λj ẽ∗j−1‖

2
U dt + ‖ej(t f )‖2

T

subject to

uj = u∗j−1 + Λje∗j−1.

Then the input is not updated, i.e. u∗j ≡ u∗j−1, and generates the same error
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3.2 Policy Value Function

e∗j ≡ e∗j−1. Now the next minimisation problem is

Λ∗j+1 = arg min
Λj+1

∫ t f

t0

‖ej+1‖2
E + ‖uj+1 − u∗j ‖

2
U dt + ‖ej+1(t f )‖2

T

= arg min
Λj+1

∫ t f

t0

‖ej+1‖2
E + ‖uj+1 − u∗j−1‖

2
U dt + ‖ej+1(t f )‖2

T

= arg min
Λj+1

∫ t f

t0

‖ej+1‖2
E + ‖Λj+1 ẽ∗j−1‖

2
U dt + ‖ej+1(t f )‖2

T

subject to

uj+1 = u∗j + Λj+1 ẽ∗j = u∗j−1 + Λj+1 ẽ∗j−1.

This is the same problem as the one for Λj and hence Λ∗j+1 = 0 is the
solution again. Because of that, the input is not updated, u∗j+1 ≡ u∗j ≡ u∗j−1,
this leads to the same error, e∗j+1 ≡ e∗j ≡ e∗j−1, and finally

ρ∗j+1 − ρ∗j =
∫ t f

t0

‖e∗j+1‖
2
E + ‖u∗j+1 − u∗j ‖

2
U dt + ‖e∗j+1(t f )‖2

T

−
∫ t f

t0

‖e∗j ‖
2
E + ‖u∗j − u∗j−1‖

2
U dt− ‖e∗j (t f )‖2

T

= 0.

This holds for U ≥ 0.
Now the second part (3.10) is shown. First, to show (3.10a), let Λ∗j 6= 0,
that is all solutions of (3.6) are non-zero, and U > 0. This also means that
u∗j − u∗j−1 = Λ∗j ẽ∗j−1 6= 0, because if that would be the case, then Λ∗j = 0
would also be a solution. Note that if Λj+1 = 0 is chosen, no update takes
place and the error signal does not change, that is ej+1(Λj+1 = 0) ≡ e∗j .
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3 Iterative Learning Control with Parameter Tuning

Then, the following holds

ρ∗j+1 − ρ∗j ≤ ρj+1(Λj+1 = 0)− ρ∗j

=
∫ t f

t0

‖ej+1(Λj+1 = 0)‖2
E + ‖ uj+1 − u∗j︸ ︷︷ ︸

=Λj+1 ẽ∗j =0

‖2
U dt + ‖ej+1(Λj+1 = 0, t f )‖2

T

−
∫ t f

t0

‖e∗j ‖
2
E + ‖u∗j − u∗j−1‖

2
U dt− ‖e∗j (t f )‖2

T

= −
∫ t f

t0

‖ u∗j − u∗j−1︸ ︷︷ ︸
6=0

‖2
U dt

< 0.

Second, to show (3.10b), let U = 0 and Λ∗j+1 6= 0, i.e. Λj+1 = 0 is not a
solution, then

ρ∗j+1 < ρj+1(Λj+1 = 0) = ρ∗j

where the equality is because the error does not change between iterations
since the input signal is not changed with Λj+1 = 0 and the inequality holds
because Λj+1 = 0 is not a solution.

Proof of P3: P1 establishes that the policy values are a monotonically de-
creasing sequence. Furthermore, they are bounded from below by definition.

The main issue, however, with the proposed procedure is that the optimi-
sation problem (3.6) is in general non-convex. Thus global optimisation is
not an option and only local heuristics can be applied. To facilitate solving
of (3.6) certain conditions on the system dynamics (3.1) are imposed to
guarantee a sufficient smoothness of the policy value function ρ.

3.3 Exploiting the Derivatives of the Policy Value Function

Knowledge of the derivatives of the policy value function is useful in order
to solve the optimisation problem (3.6), because then familiar optimisation
methods can be employed. The first and second derivative of the proposed
cost (3.7) are shown in the following and assumptions on the system dynam-
ics (3.1) are proposed to ensure their existence and continuity. It is, without
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3.3 Exploiting the Derivatives of the Policy Value Function

loss of generality, assumed that the input u ∈ R is scalar to significantly
simplify the notation. Then the learning gain is a (row) vector

Λj = λj ∈ R1×2q.

The gradient of the policy value function is

∇λj ρj = 2
∫ t f

t0

eT
j E

∂h
∂x

(
xj

) ∂x
∂λj

+ (uj − uj−1)UẽT
j−1 dt

+ 2eT
j (t f )T

∂h
∂x

(
xj(t f )

) ∂x
∂λj

(t f ) (3.12)

with the sensitivity function ∂x
∂λj

(t) as the solution of the sensitivity equation
[22]

d
dt

∂x
∂λj

(t) =
∂ f
∂x

(
xj(t), uj(t)

) ∂x
∂λj

(t) +
∂ f
∂u

(
xj(t), uj(t)

)
ẽT

j (t) (3.13a)

∂x
∂λj

(t0) = 0. (3.13b)

Note that whenever a column vector and a row vector are multiplied in that

order, e.g. ∂ f
∂u

(
xj(t), uj(t)

)
ẽT

j (t), the outer product has to be used. For the
gradient of the policy value function (3.12) to exist and be continuous, the
following assumptions have to hold:

• The initial input signal u0(t) is continuous in t.

• The state dynamics f (x, u) are continuously differentiable in both
arguments.

• The output equation h(x) is continuously differentiable.

This facilitates the use of first-order methods and the first-order condition
for optimality, i.e. ∇ρ = 0, can be checked.
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3 Iterative Learning Control with Parameter Tuning

In addition, the second derivative of the policy value function is

d2ρj

dλ2
j
= 2

∫ t f

t0

(
∂h
∂x

∂x
∂λj

)T

E
∂h
∂x

∂x
∂λj

+ eT
j E

 ∂2h
∂x2

(
∂x
∂λj

)2

+
∂h
∂x

∂2x
∂λ2

j


+ ẽj−1UẽT

j−1 dt (3.14)

+ 2

( ∂h
∂x

∂x
∂λj

)T

T
∂h
∂x

∂x
∂λj

+ eT
j T

 ∂2h
∂x2

(
∂x
∂λj

)2

+
∂h
∂x

∂2x
∂λ2

j

∣∣∣∣∣∣
t=t f

with ∂2x
∂λ2 (t) as the solution of the additional initial value problem

d
dt

∂2x
∂λ2 =

∂ f
∂x

∂2x
∂λ2 +

∂2 f
∂x2

(
dx
dλj

)T
dx
dλj

+
∂2 f

∂x∂u
ẽT

j−1

(
dx
dλj

)T

+
∂2 f

∂u∂x
dx
dλj

ẽj−1 +
∂2 f
∂u2 ẽj−1 ẽT

j−1 (3.15a)

∂2x
∂λ2 (t0) = 0. (3.15b)

For the second derivative to also exist and be continuous, the following
assumptions have to hold:

• The initial input signal u0(t) is continuous in t.

• The state dynamics f (x, u) are twice continuously differentiable in
both arguments.

• The output equation h(x) is twice continuously differentiable.

The derivation of the first and the second derivative and the reasoning
behind the assumptions can be found in Section 6.1 of the appendix. If
the assumptions are met, the optimisation problem (3.6) can then be solved
locally using second-order methods. With the groundwork laid out, the
approach is ready for application.
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4 Examples

The introduced ILC procedure is tested on two nonlinear systems for a task
that can be controlled by an LQR. The two examples are also motivated by
the concept of human-machine-cooperation, where the proposed ILC scheme
has to cooperate with an only partially implemented controller in order to
execute a task together. While both examples feature a double pendulum,
the structure is different. The first one is a double pendulum on a cart with
three outputs but only two inputs, it is therefore underactuated. The second
one is a fixed double pendulum with two outputs and two inputs in addition
to a harder task.

4.1 Double Pendulum on a Cart

The considered application is a double pendulum attached to a cart. A
diagram of the system is depicted in Figure 4.1. The two inputs, the force F
and the torque τ, are used to influence the configuration of the system. It is
described by the position of the cart x, the angle of the closer pendulum ϕ
and the angle of the further pendulum ψ and together with their velocities
they constitute the state vector

z =
[
x ϕ ψ ẋ ϕ̇ ψ̇

]T . (4.1)

The equations of motion of the double pendulum on a cart are given in the
form

ż = f (z, u), (4.2)

with

u =

[
F
τ

]
. (4.3)

The explicit formulation and derivation can be found in Section 6.2 of the
appendix. The parameters of the system are chosen as m1 = m2 = m3 = 1 kg,
l2 = l3 = 1 m and g = 9.81 kg/ms2 for simplicity.
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g

Figure 4.1: Diagram of the double pendulum on a cart. The two inputs are
the force F on the cart and the torque τ on the link between the two rods.
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4.1 Double Pendulum on a Cart

The idea is to design an LQR for both inputs, but to only implement the
torque τ = τLQR(z), changing the system into

ż = f
(

z,
[

F
τLQR(z)

])
= f̃ (z, F), (4.4)

with the force F left open for learning. The question is then if a human can
learn to apply F(t) in such a way that the system can perform its task which
is tracking a reference trajectory. To emulate this human learning, the ILC
with parameter tuning as proposed in Chapter 3 is used.

The task the system has to perform can roughly be described as moving the
cart from the position xd(0) = −1 to xd(10) ≈ 0 while having the pendulum
hang down with (almost) no swinging, i.e. ϕd(t) ≈ 0 and ψd(t) ≈ 0 for
t ∈ [0, 10]. With this, the output equation is

y = h(z) =

x
ϕ
ψ

 . (4.5)

If the system would be initialised in the standing position, the double
pendulum would presumptively topple and it would be hard to learn from
the resulting error signal.

The first step is to design the LQR for both inputs which tracks the
desired trajectory. The feasible input that generates the reference trajectory
is denoted as ud =

[
Fd τd

]T and the corresponding differential equation is

żd = f (zd, ud). (4.6)

The derivation of the feasible input and the reference trajectory can be found
in Section 6.3 in the appendix. Note that the feasible inputs not only realise
the reference trajectory, that is yd, but in fact a reference for all the states.
While the LQR will track those additional desired states as well, they will be
later neglected in the ILC. The difference between the actual states and the
desired ones is defined as

δz := z− zd. (4.7)
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4 Examples

Differentiation and a linear Taylor approximation yield

δ̇z = ż− żd

= f (z, u)− f (zd, ud)

≈ f (zd, ud) +
∂ f
∂z

(zd, ud)(z− zd) +
∂ f
∂u

(zd, ud) (u− ud)︸ ︷︷ ︸
:=δu

− f (zd, ud)

=
∂ f
∂z

(zd, ud)︸ ︷︷ ︸
:=A(t)

δz +
∂ f
∂u

(zd, ud)︸ ︷︷ ︸
:=B(t)

δu,

which is a linear time-variant system

δ̇z(t) = A(t)δz + B(t)δu (4.8)

for which a finite horizon LQR can be designed. The cost is

JLQR =
∫ 10

0
δzTQδz + δuT Rδu dt + δz(10)TSδz(10) (4.9)

with the weighting matrices

Q =


10 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , R =

[
0.01 0

0 0.01

]
,

S =


100 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The weights in Q are chosen that way because completing the move from left
to right is deemed more important than keeping the pendulum straight, but
both is more important than tracking the velocities. In addition, the cart’s
final position should correspond to the desired one, whereas the pendulum’s

34



4.1 Double Pendulum on a Cart
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Figure 4.2: Resulting position of the cart when the full LQR is applied to the
double pendulum on a cart.

final angles are not as important and tracking in general has priority over
small input signals, thus the weights in S and R. The optimal feedback is

δuLQR(t) = −R−1B(t)T P(t)δz(t) (4.10)

with P(t) as the solution of the Riccati differential equation

Ṗ(t) = P(t)B(t)R−1B(t)T P(t)− P(t)A(t)− AT(t)P(t)−Q, (4.11a)

P(10) = S. (4.11b)

The tracking when δuLQR is applied can be seen in figures 4.2 – 4.6 to-
gether with the reference trajectory and the feasible inputs that realise it.
Nevertheless, only the torque feedback τLQR is realised and the force F has
to be learned with ILC over a number of iterations.

In order to emulate a human learning to cooperate with the partially
implemented LQR, the ILC procedure as outlined in Chapter 3 is applied.
With the tracking error defined as

e = y− yd (4.12)
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Figure 4.3: Resulting trajectory of the closer angle when the full LQR is
applied to the double pendulum on a cart.
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Figure 4.4: Resulting trajectory of the further angle when the full LQR is
applied to the double pendulum on a cart.
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Figure 4.5: Input force of the LQR. The corresponding system is the double
pendulum on a cart.
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Figure 4.6: Input torque of the LQR. The corresponding system is the double
pendulum on a cart.
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the associated policy value function, which is comparable to the LQR cost, is

ρj+1(Λj+1) =
∫ 10

0
eT

j+1Eej+1 + (Fj+1 − Fj)
TU(Fj+1 − Fj)dt + eT

j+1(t f )Tej+1(t f )

=
∫ 10

0
eT

j+1Eej+1 dt + eT
j+1(t f )Tej+1(t f ) (4.13)

with the weighting matrices

E =

10 0 0
0 5 0
0 0 5

 , U = 0, T =

100 0 0
0 1 0
0 0 1


and j ∈ N0 is again the iteration index. Since δz =

[
eT ẋ ϕ̇ ψ̇

]T , the
ILC weighting matrices are chosen corresponding to the LQR matrices, that
is

Q =


E

1
1

1

 , S =


T

1
1

1

 . (4.14)

As mentioned before, the ILC only tracks the output, i.e. it only penalises
the error in x, ϕ and ψ. The policy value when the full LQR is applied
is ρLQR = 1.09× 10−3. The cooperation between ILC and LQR is deemed
successful if it performs better than the fully-implemented LQR, that is if
ρj < ρLQR for some j.

The ILC procedure includes solving the non-convex optimisation prob-
lem (3.6) with

ρ∗j+1 = min
Λj+1

ρ(Λj+1)

where Λj+1 ∈ R1×6 is a 6-dimensional decision variable. In order to find a
solution of (3.6), several local searches are performed and the best solution
is taken. Unfortunately, this might mean that the optimal solution is missed.
If the solution is the zero learning gain, the procedure can be stopped,
because the policy value cannot be improved in future iterations, as shown
in Section 3.2. Thus it is sensible to include the zero gain as an initial guess.
For the minimisation MATLAB’s fminunc function with a quasi-Newton
algorithm is used. Because this is a second order method, it uses the gradient
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4.1 Double Pendulum on a Cart

and the Hessian of the objective function. The gradient (3.12) is calculated
and passed to fminunc whereas the Hessian (3.14) is not computed but
approximated by fminunc’s default algorithm. The initial guesses for the
minimisation are given by a grid over the search space; each component
of the learning gain is either −1, 0 or 1 and all possible combinations are
used. This leads to 729 initial guesses in total that are explored in each
iteration using MATLAB’s multiStart function because it supports parallel
computing.

The initial input is chosen as the zero signal

F0 ≡ 0, (4.15)

which can be interpreted as doing nothing and observing how the half-
implemented LQR reacts before any action is taken. The input force is
subsequently updated according to the input update law (3.6c)

Fj+1 = Fj + Λ∗j+1

[
ej
ėj

]
, j ∈N0.

On a PC with four cores at 3.40 GHz one iteration takes about 3190 s or
53 min 10 s on average. Learning takes place for 36 iterations and the
resulting policy values are shown in Figure 4.7. The learned input cooperates
successfully with the half-implemented LQR, surpassing the performance
of the fully implemented LQR with regards to the policy value after 10

iterations. The last policy value is ρ36 = 3.76× 10−5, whereas the full LQR
has a policy value of ρLQR = 1.09× 10−3. The error in the cart’s position is
depicted in Figure 4.8, it can be seen that the cooperation tracks the reference
position more closely. Note that the ILC learns a feedforward signal and
can thus anticipate the move, while the LQR has to wait for an error to feed
back. The two angles are depicted in figures 4.9, 4.10, 4.11 and 4.12, the
plots show that the ILC produces trajectories which undulate close to the
reference. The same holds true for the learned and feasible forces shown
in figures 4.13 and 4.14, as well as for the torque resulting from the half-
implemented LQR seen in Figure 4.15. All inputs can be seen to peak at
the end of the time span. A smaller ILC run without a terminal cost, that
is T = 0, indicates that this peak is not caused by the terminal cost, as seen
in figures 4.16 and 4.17. Although it is probable that in each iteration only
a sub-optimal learning gain is found, the procedure is able to generate a
strictly monotonically decreasing sequence of policy values. Consequently,
the ILC scheme learned to cooperate with the half-implemented LQR in
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Figure 4.7: Policy values when the ILC is applied starting with a zero input
signal. The initial policy value, i.e. before any input updates, ρ0 = 116 and
the next two, ρ1 = 0.0480 and ρ2 = 0.0105, are not included. The cooperation
performs better than the fully-implemented LQR after 10 iterations. The
corresponding system is the double pendulum on a cart.
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4.1 Double Pendulum on a Cart
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Figure 4.8: Error in the cart’s position when the ILC is applied after 36

iterations and when the full LQR is applied. The corresponding system is
the double pendulum on a cart.
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Figure 4.9: Angle of the closer pendulum after 36 iterations of ILC, when
the full LQR is applied and the desired angle. The corresponding system is
the double pendulum on a cart.
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Figure 4.10: Error in the closer angle when the ILC is applied after 36

iterations and when the full LQR is applied. The corresponding system is
the double pendulum on a cart.
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Figure 4.11: Angle of the further pendulum after 36 iterations of ILC, when
the full LQR is applied and the desired angle. The corresponding system is
the double pendulum on a cart.
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Figure 4.12: Error in the further angle when the ILC is applied after 36

iterations and when the full LQR is applied. The corresponding system is
the double pendulum on a cart.
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Figure 4.13: Applied force after 36 iterations of ILC. In addition, the force
applied when the full LQR is used and the feasible force are shown. The
corresponding system is the double pendulum on a cart.
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Figure 4.14: Applied force after 36 iterations of ILC. In addition, the force
applied when the full LQR is used and the feasible force are shown. The
corresponding system is the double pendulum on a cart. (The y-axis is
different in comparison to Figure 4.13)
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Figure 4.15: Applied torque of the LQR, when the force is learned via ILC,
after 36 iterations, the torque applied by the fully implemented LQR and
the feasible torque. The corresponding system is the double pendulum on a
cart.
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Figure 4.16: Applied force after 2 iterations of ILC without a terminal cost.
The peak at the end still persists and thus seems not to be caused by the
terminal cost. The corresponding system is the double pendulum on a cart.
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Figure 4.17: Applied torque of the LQR, when the forced is learned via ILC
without a terminal cost, after 2 iterations. The peak at the end still persists
and thus seems not to be caused by the terminal cost. The corresponding
system is the double pendulum on a cart.
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order to complete the provided task and a human is arguably able to do
the same. A comparison of three different stages in the learning process
is provided in figures 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24 and 4.25. All
applied forces are plotted in Figure 4.26 and are of reasonable magnitude,
even though with U = 0 the change in the input signal is not penalised.
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Figure 4.18: Error in the cart’s position when the ILC is applied after 10, 20

and 36 iterations. The corresponding system is the double pendulum on a
cart.
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Figure 4.19: Angle of the closer pendulum after 10, 20 and 36 iterations of
ILC. The corresponding system is the double pendulum on a cart.
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Figure 4.20: Error in the angle of the closer pendulum after 10, 20 and 36

iterations of ILC. The corresponding system is the double pendulum on a
cart.

47



4 Examples

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

t in s

ψ
in

de
gr

ee
s

ψd
ψ10
ψ20
ψ36

Figure 4.21: Angle of the further pendulum after 10, 20 and 36 iterations of
ILC. The corresponding system is the double pendulum on a cart.
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Figure 4.22: Errors in the angle of the further pendulum after 10, 20 and 36

iterations of ILC. The corresponding system is the double pendulum on a
cart.
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Figure 4.23: Applied force after 10, 20 and 36 iterations of ILC. The corre-
sponding system is the double pendulum on a cart.
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Figure 4.24: Applied force after 10, 20 and 36 iterations of ILC. The cor-
responding system is the double pendulum on a cart. (This figure has a
different y-axis than Figure 4.23)
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Figure 4.25: Applied torque of the LQR, when the force is learned via ILC,
after 10, 20 and 36 iterations. The corresponding system is the double
pendulum on a cart.
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Figure 4.26: All applied forces of the ILC. The corresponding system is the
double pendulum on a cart.
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4.2 Double Pendulum

4.2 Double Pendulum

The next application is the double pendulum depicted in Figure 4.27. The
inputs are the two torques η, which acts on the pivot, and τ, which acts
on the link between the rods. For simplicity, the parameters are chosen as
m1 = m2 = 1 kg, l1 = l2 = 1 m and g = 9.81 kg/ms2. The system has the
states and inputs

x =


ϕ
ψ
ϕ̇
ψ̇

 , (4.16)

u =

[
η
τ

]
(4.17)

and dynamics of the form
ẋ = f (x, u). (4.18)

The derivation of the dynamics (4.18) can be found in Section 6.4 of the
appendix. The approach is similar to the one in the previous example,
but this time η is learned by the ILC, while τ is controlled by the half-
implemented LQR.

The task the system has to perform is a swing-up in 10 s while keeping
the double pendulum straight, that is both angles follow the same trajectory.
For this, a polynomial is chosen

ϕd(t) = ψd(t) = π(
10
103 t3 − 15

104 t4 +
6

105 t5). (4.19)

The output equation is then

y = h(x) =
[

ϕ
ψ

]
. (4.20)

The feasible input ud =
[
ηd τd

]T is computed by inserting the reference tra-
jectory (4.19) and its time derivatives into the the equations of motion (6.20)
and (6.21) and solving for ηd and τd. The corresponding dynamics are
denoted as

ẋd = f (xd, ud). (4.21)

Let the deviation from the desired states be

δx := x− xd. (4.22)
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Figure 4.27: Diagram of the double pendulum. The two inputs are the
torques η and τ on the pivot and the link between the pendulums. Each rod
is assumed to be weightless with a point mass fixed to their ends.
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4.2 Double Pendulum

Differentiation and a linear Taylor approximation yield

δ̇x = ẋ− ẋd

= f (x, u)− f (xd, ud)

≈ f (xd, ud) +
∂ f
∂x

(xd, ud)(x− xd) +
∂ f
∂u

(xd, ud) (u− ud)︸ ︷︷ ︸
:=δu

− f (xd, ud)

=
∂ f
∂x

(xd, ud)︸ ︷︷ ︸
:=A(t)

δx +
∂ f
∂u

(xd, ud)︸ ︷︷ ︸
:=B(t)

δu

which is a linear time-variant system

δ̇x(t) = A(t)δx + B(t)δu. (4.23)

Now a finite horizon LQR is designed for (4.23). The cost is

JLQR =
∫ 10

0
δxTQδx + δuT Rδu dt + δx(10)TSδx(10) (4.24)

with the weighting matrices

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

R =

[
0.01 0

0 0.01

]
,

S =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 .

This time, all states are weighted equally, but priority is given to the angles
ending up in their desired positions. The optimal feedback is

δuLQR(t) = −R−1B(t)T P(t)δx(t) (4.25)

with P(t) as the solution of the Riccati differential equation

Ṗ(t) = P(t)B(t)R−1B(t)T P(t)− P(t)A(t)− AT(t)P(t)−Q, (4.26a)

P(10) = S. (4.26b)
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Only the feedback part corresponding to τ is implemented and η is left open
for learning.

The ILC procedure in Chapter 3 is again applied with the policy value
function

ρj+1(Λj+1) =
∫ 10

0
eT

j+1Eej+1 + (ηj+1 − ηj)
TU(ηj+1 − ηj)dt + eT

j+1(t f )Tej+1(t f )

=
∫ 10

0
eT

j+1Eej+1 dt + eT
j+1(t f )Tej+1(t f ) (4.27)

where the tracking error is defined as

e = y− yd (4.28)

and the difference in the input is neglected with U = 0. Because δx =[
e ϕ̇ ψ̇

]T , the weighting matrices on the error are chosen similar to the
weights of the LQR

E =

[
1 0
0 1

]
,

T =

[
10 0
0 10

]
.

The cooperation between ILC and LQR is deemed successful if it performs
better than the fully-implemented LQR, that is if ρj < ρLQR for some j.

The torque on the pivot is updated in each iteration according to the
update law (3.6c)

ηj+1 = ηj + Λ∗j+1

[
ej
ėj

]
, j ∈N0

where the learning gain is computed by solving (3.6)

ρ∗j+1 = min
Λj+1

ρ(Λj+1).

This time, MATLAB’s fminunc is used without providing the gradient,
instead it is approximated by fminunc using forward finite differences. In
addition, only one initial guess, the zero gain, is provided. The initial input
signal is chosen as

η0 ≡ 0
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Figure 4.28: Policy values when the ILC is applied starting with a zero input
signal. The initial policy value, i.e. before any input updates, ρ0 = 160 is not
plotted. The cooperation performs better than the fully-implemented LQR
after 24 iterations. The corresponding system is the double pendulum with
two torques.

and the ILC is run for 33 iterations. In the last iteration, the learning gain
is the zero matrix. The results are plotted in figures 4.28 – 4.32. Despite
using only one initial guess in the optimisation problem (3.6), the ILC is
able to cooperate reasonably well with the half-implemented LQR, their
performance is better than the fully-implemented LQR after 23 iterations.
The angle ψ of the further pendulum, depicted in Figure 4.30, follows almost
the trajectory of ψLQR, the angle when the full LQR is used. The last policy
value is ρ33 = 3.84 and only slightly better than the policy value of the LQR
ρLQR = 3.92.
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Figure 4.29: Angle of the closer pendulum after 33 iterations of ILC. The
corresponding system is the double pendulum with two torques.
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Figure 4.30: Angle of the further pendulum after 33 iterations of ILC. The
corresponding system is the double pendulum with two torques.
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Figure 4.31: Learned torque on the pivot of the double pendulum after 33

iterations of ILC. The corresponding system is the double pendulum with
two torques.
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Figure 4.32: Torque τ33 of the half-implemented LQR after 33 iterations of
ILC. τLQR is the torque when the full LQR is applied. The corresponding
system is the double pendulum with two torques.
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5 Summary and Outlook

In this work, an approach that applies iterative learning control (ILC) to
nonlinear, continuous-time systems is proposed by tuning the learning gain
with reinforcement learning (RL). It was motivated by human-machine-
cooperation in which a human has to learn to cooperate with a partially-
implemented controller. One example of such a human-machine-cooperation
are actuated orthoses [26]. The human learning process is substituted by ILC,
as it is deemed to be an appropriate learning scheme that is able to emulate
human learning to some degree [5]. Because the natural environment of a
human is the nonlinear world, a procedure is needed to successfully apply
ILC for nonlinear systems. This procedure is found by combining ILC with
RL. In every iteration of the ILC an optimisation problem is solved for the
learning gain that leads to the lowest policy value after updating the input
signal with it. The main drawback is the, in general, non-convexity of the
problem which only enables a local search for an appropriate (suboptimal)
solution. Nevertheless, if a non-trivial solution is found, then a smaller
policy value is guaranteed and if the solution is the zero learning gain, then
learning stops. Conditions on the nonlinear system are given that guarantee
the existence of continuous second-order derivatives. This facilitates the use
of second-order optimisation methods. With this in hand, the cooperation
between a classic controller, in this case a linear quadratic regulator (LQR),
and ILC as a substitute for a human, is tested on a double pendulum on a
cart and on a regular double pendulum. The application is successful, the
ILC procedure is able to learn to cooperate with the half-implemented LQR
and they complete the task.

Although the use of ILC to emulate human learning is reasonable, a more
sophisticated scheme is arguably more appropriate to imitate this complex
process. The presented examples are simple and there exist certainly more
realistic examples in which a human has to assume input channels from the
controller for which the procedure could be tested, for example orthoses
or prostheses. In this work, the proposed ILC scheme is only used in the
framework of this human-machine-cooperation, but if it were to be used
for the classical applications of ILC, then several open question have to
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5 Summary and Outlook

be investigated first. For example, the real-time availability of the optimal
solution needs to be ensured. More importantly, the scheme heavily relies
on exact system knowledge to predict the next policy value. Because ILC
is inherently based on uncertainty in the system dynamics, the robustness
of the scheme has to be examined before it can be used in this context. In
addition, there might be a benefit in looking at the policy value after the next,
to solve the optimisation problem for that policy value and to keep it constant
for two iterations instead of one. Alternatively, the optimisation problem
could be solved for more policy values to come, with a possibly different
learning gain in each iteration, but to only update the input for the next
iteration and to solve this problem again in a model-predictive-control-like
fashion. This, however, is left open for future work.
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6 Appendix

The appendix provides additional information that was omitted in the main
parts.

6.1 Derivatives of the Policy Value Function

In order to simplify the notation of the derivatives, it is assumed that the
learning gain is a row vector Λj = λj ∈ R1×2q, that is the input is a scalar.
First, the gradient of the policy value function is derived. The following
assumptions encompass all requirements that are made in its derivation:

• The initial input signal u0(t) is continuous in t.

• The state dynamics f (x, u) are continuously differentiable in both
arguments.

• The output equation h(x) is continuously differentiable.

The policy value function in iteration j is

ρj(λj) =
∫ t f

t0

eT
j Eej + U(uj − uj−1)

2 dt + eT
j (t f )Tej(t f )

and because it is real-valued, its gradient is the total derivative

∇λj ρj =
d

dλj
ρj.

The Leibniz integral rule is used to interchange the integral and the deriva-

tive, for this ej(t) has to be continuous in both t and λj and ∂ej(t)
∂λj

has to be
continuous in both t and λj. Then the gradient is

∇λj ρj = 2
∫ t f

t0

eT
j E

∂h
∂x

(
xj

) ∂x
∂λj

+ (uj − uj−1)UẽT
j−1 dt

+ 2eT
j (t f )T

∂h
∂x

(
xj(t f )

) ∂x
∂λj

(t f ).
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6 Appendix

To calculate ∂x
∂λj

, the fundamental theorem of Lebesgue integral calculus

is used. Because x(t) is continuously differentiable, it is also absolutely
continuous and it can be expressed at

x(t) = x(t0) +
∫ t

t0

f (x(τ), u(τ))dτ.

Differentiation with respect to the learning gain yields

∂xj

∂λj
=

∂

∂λj
xj(t0) +

∂

∂λj

∫ t

t0

f (xj(τ), uj(τ))dτ

=
∫ t

t0

∂

∂λj
f (xj(τ), uj(τ))dτ

=
∫ t

t0

∂ f
∂x

(xj(t), uj(t))
∂xj

∂λj
+

∂ f
∂u

(xj(t), uj(t))
∂uj

∂λj
dτ,

if f (xj(τ), uj(τ)) and ∂ f
∂λj

(xj(τ), uj(τ)) are continuous in τ and λj. Next, the
time derivative is applied yielding

∂

∂t
∂xj

∂λj
=

∂

∂t

∫ t

t0

∂ f
∂x

(xj(t), uj(t))
∂xj

∂λj
+

∂ f
∂u

(xj(t), uj(t))
∂uj

∂λj
dτ

=
∂ f
∂x

(xj(t), uj(t))
∂xj

∂λj
+

∂ f
∂u

(xj(t), uj(t))ẽj−1(t)
(6.1)

with the initial condition
∂xj

∂λj

∣∣∣∣∣
t=t0

= 0.

If ∂ f
∂x (xj(t), uj(t)) and ∂ f

∂u (xj(t), uj(t))ẽj−1(t) are piecewise continuous in
t, then the sensitivity equation (6.1) has a unique solution over [t0, t f ] (see
Theorem 3.2 in [22]). If further

∂ f
∂x

(xj(t), uj(t))
∂xj

∂λj
+

∂ f
∂u

(xj(t), uj(t))ẽj−1(t)

is continuous in t, ∂xj
∂λj

and λj and locally Lipschitz in ∂xj
∂λj

(uniformly in t
and λj), then the solution depends continuously on λj (see Theorem 3.5
in [22]). Now the error is examined on its continuity in λj. It is given by
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6.1 Derivatives of the Policy Value Function

ej = yj − yd = h(xj)− yd and continuous in λj if yj is, which is the case if
the input uj is as well. The input in iteration j is given by

uj = u0 +
j

∑
k=1

λk ẽk−1

which is continuous in λj, and in t if u0 is. Therefore, the gradient ∇λj ρj of
the policy value function exists and is continuous in λj for all j ∈N.

Second, the Hessian, that is the second derivative, of the policy value
function is derived. The following assumptions encompass all requirements
that are made in its derivation:

• The initial input signal u0(t) is continuous in t.

• The state dynamics f (x, u) are twice continuously differentiable in
both arguments.

• The output equation h(x) is twice continuously differentiable.

To take the second derivative the differential and integral have to be switched
again and the Leibniz integral rule is applied once more under the conditions
that the integrand and its partial derivative with respect to λj are continuous
in t and λj. Then the second derivative is

d2ρj

dλ2
j
= 2

∫ t f

t0

(
∂h
∂x

∂x
∂λj

)T

E
∂h
∂x

∂x
∂λj

+ eT
j E

 ∂2h
∂x2

(
∂x
∂λj

)2

+
∂h
∂x

∂2x
∂λ2

j


+ ẽj−1UẽT

j−1 dt

+ 2

( ∂h
∂x

∂x
∂λj

)T

T
∂h
∂x

∂x
∂λj

+ eT
j T

 ∂2h
∂x2

(
∂x
∂λj

)2

+
∂h
∂x

∂2x
∂λ2

j

∣∣∣∣∣∣
t=t f

.

An additional second initial value problem has to be solved in order to
determine ∂2x

∂λ2 (t). It can be derived by starting with

∂

∂λj

∂xj

∂λj
=

∂

∂λj

∫ t

t0

∂ f
∂x

(xj(t), uj(t))
∂xj

∂λj
+

∂ f
∂u

(xj(t), uj(t))
∂uj

∂λj
dτ.
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If the integrand and its partial derivative with respect to λj are continuous
in t and λj, derivation and integration can be switched and differentiation
with respect to t afterwards yields

d
dt

∂2x
∂λ2 =

∂ f
∂x

∂2x
∂λ2 +

∂2 f
∂x2

(
dx
dλj

)T
dx
dλj

+
∂2 f

∂x∂u
ẽT

j−1

(
dx
dλj

)T

+
∂2 f

∂u∂x
dx
dλj

ẽj−1 +
∂2 f
∂u2 ẽj−1 ẽT

j−1, (6.2a)

∂2x
∂λ2 (t0) = 0. (6.2b)

If the right side of equation (6.2a) is continuous in t, ∂2x
∂λ2 and λj and locally

Lipschitz in ∂2x
∂λ2 (uniformly in t and λj), then the solution exists on [t0, t f ]

and depends continuously on λj (Theorem 3.5 in [22]). With that, the second
derivative of the policy value function also exists and is continuous in λj for
all j ∈N.

6.2 Modelling of the Double Pendulum on a Cart

A model of the double pendulum on a cart is derived using Lagrangian
mechanics. A diagram of the system is depicted in Figure 6.1. To simplify
the equations it is assumed that the pendulums themselves are weightless
and have the point masses m2 and m3 fixed to their ends. The configuration
of the system can be uniquely described by the cart’s position x, the angle
of the closer pendulum ϕ and the angle of the further pendulum ψ and
together they constitute the generalised coordinates

q =

x
ϕ
ψ

 . (6.3)
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eI
x

eI
y

x

F
S1, m1

l2

ϕ

ψ

l3

S3, m3

S2, m2
τ

O

g

Figure 6.1: Diagram of the double pendulum on a cart. The force F and
torque τ are applied to the system. It is assumed that the rods are weightless
and have point masses m2 and m3 fixed to their ends. The cart’s mass is
assumed to be in the concentrated in the point mass m1 as well.
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In the inertial frame of reference I, the position and velocities of the centres
of mass are

IrOS1 =

[
x
0

]
, IvS1 =

[
ẋ
0

]
,

IrOS2 =

[
x + l2 sin(ϕ)
−l2 cos(ϕ)

]
, IvS2 =

[
ẋ + l2 ϕ̇ cos(ϕ)

l2 ϕ̇ sin(ϕ)

]
,

IrOS3 =

[
x + l2 sin(ϕ) + l3 sin(ψ)
−l2 cos(ϕ)− l3 cos(ψ)

]
, IvS3 =

[
ẋ + l2 ϕ̇ cos(ϕ) + l3ψ̇ cos(ψ)

l2 ϕ̇ sin(ϕ) + l3ψ̇ sin(ψ)

]
.

The kinetic energy is

T =
1
2

m1 IvS1
T

IvS1 +
1
2

m2 IvS2
T

IvS2 +
1
2

m3 IvS3
T

IvS3

=
1
2
(m1 + m2 + m3)ẋ2 +

1
2

l2
2(m2 + m3)ϕ̇2 +

1
2

m3l2
3 ψ̇2 (6.4)

+ (m2 + m3)l2 cos(ϕ)ẋϕ̇ + m3l3 cos(ψ)ẋψ̇ + m3l2l3 cos(ϕ− ψ)ϕ̇ψ̇

and the potential energy is

V = − ((m2 + m3)l2 cos(ϕ) + m3l3 cos(ψ)) g. (6.5)

The equations of motion are then described by the Euler-Lagrange equation

d
dt

∂T
∂q̇
− ∂T

∂q
+

∂V
∂q

= fNP (6.6)

with fNP =
[
F 0 τ

]T . This leads to the three equations

F = (m1 + m2 + m3)ẍ + (m2 + m3)l2 cos(ϕ)ϕ̈

− (m2 + m3)l2 sin(ϕ)ϕ̇2 + m3l3 cos ψψ̈

−m3l3 sin(ψ)ψ̇2,

0 = l2
2(m2 + m3)ϕ̈ + (m2 + m3)l2 cos(ϕ)ẍ

+ m3l2l3 cos(ϕ− ψ)ψ̈ + m3l2l3 sin(ϕ− ψ)ψ̇2

+ (m2 + m3)l2 sin(ϕ)g,

τ = m3l2
3 ψ̈ + m3l3 cos(ψ)ẍ + m3l2l3 cos(ϕ− ψ)ϕ̈

−m3l2l3 sin(ϕ− ψ)φ̇2 + m3l3 sin(ψ)g,
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which can be solved for the following three equations:

ẍ =
m2 + m3 sin2(ϕ− ψ)

m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

F

− (m2 + m3) sin(ϕ) sin(ϕ− ψ)

m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

τ

l3

+
m2(m2 + m3)l2 sin(ϕ)

m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

ϕ̇2

+
m2m3l3 sin(ϕ) cos(ϕ− ψ)

m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

ψ̇2

+
m2(m2 + m3) sin(ϕ) cos(ϕ)

m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

g,

(6.7)

ϕ̈ =
−m2 cos(ϕ) + m3 sin(ψ) sin(ϕ− ψ)

l2
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) F

− m1 cos(ϕ− ψ) + (m2 + m3) sin(ϕ) sin(ψ)
l2
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) τ

l3

− l2 ((m2 + m3)m2 sin(ϕ) cos(ϕ) + m1m3 sin(ϕ− ψ) cos(ϕ− ψ))

l2
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) ϕ̇2

− l3m3 (m1 sin(ϕ− ψ) + m2 sin(ϕ) cos(ψ))
l2
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) ψ̇2

− m1m3 cos(ψ)sin(ϕ− ψ) + m2(m1 + m2 + m3) sin(ϕ)

l2
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) g,

(6.8)
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ψ̈ =
−(m2 + m3) sin(ϕ) sin(ϕ− ψ)

l3
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) F

+
(m2 + m3)

(
m1 + (m2 + m3) sin2(ϕ)

)
l3
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) τ

l3m3

+
(m2 + m3)m1l2 sin(ϕ− ψ)

l3
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) ϕ̇2

+
m1m3l3 sin(ϕ− ψ)cos(ϕ− ψ)

l3
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) ψ̇2

+
(m2 + m3)m1 cos(ϕ) sin(ϕ− ψ)

l3
(
m1
(
m2 + m3 sin2(ϕ− ψ)

)
+ m2(m2 + m3) sin2(ϕ)

) g.

(6.9)

If the state vector

z =


x
ϕ
ψ
ẋ
ϕ̇
ψ̇


is introduced, then the state space is

ż = f (z, F, τ) =


ẋ
ϕ̇
ψ̇

f4(z, F, τ)
f5(z, F, τ)
f6(z, F, τ)


where f4 is equation (6.7), f5 is (6.8) and f6 is (6.9).

6.3 Derivation of the Reference Trajectory for the Double
Pendulum on a Cart

The reference trajectory for the double pendulum on a cart in Section 4.1
is designed by naively applying an LQR controller. First, a preliminary
reference trajectory for the states z̄d is designed. The idea is to move the cart
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from x̄d(0) = −1 to x̄d(10) = 0 in 10 seconds while the double pendulum is
hanging down without moving at all, that is ϕ̄d(t) ≡ ψ̄d ≡ 0. A polynomial
is designed for the cart’s position and its velocity

x̄d(t) = −1 +
(

3
102 t2 − 2

103 t3
)

, (6.10)

˙̄xd(t) =
6

102 t− 6
103 t2. (6.11)

Because the input that realises these trajectories is unknown, the force and
torque are naively assumed to be zero, that is F̄d ≡ τ̄ ≡ 0. Then a linear
time-varying system is derived by linearising the state dynamics f (z, u) of
the system about this preliminary reference trajectory

˙̄z =
∂ f
∂z

(z̄d, ūd)︸ ︷︷ ︸
:=Ā(t)

z̄ +
∂ f
∂u

(z̄d, ūd)︸ ︷︷ ︸
:=B̄(t)

ū, (6.12a)

z̄(0) = z̄d(0). (6.12b)

Now a LQR is designed with the cost

J̄LQR =
∫ 10

0
z̄TQz̄ + ūT Rū dt + z̄(10)TSz̄(10) (6.13)

where the weighting matrices are

Q =


10 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , R =

[
0.01 0

0 0.01

]
,

S =


100 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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They correspond to the weighting matrices that are chosen in the example
in Section 4.1. The optimal input is then

ūLQR(t) = −R−1B̄(t)T P̄(t)z̄(t) (6.14)

with P̄(t) as the solution of the Riccati differential equation

˙̄P(t) = P̄(t)B̄(t)R−1B̄(t)T P̄(t)− P̄(t)Ā(t)− ĀT(t)P̄(t)−Q, (6.15a)

P̄(10) = S. (6.15b)

The reference trajectory used in the example in Section 4.1 is the resulting
trajectory when the feedback (6.14), which is thus the feasible input ud =
ūLQR, is applied to the system (6.12).

6.4 Modelling of the Double Pendulum

A model of the double pendulum depicted in Figure 6.2 is derived using
Lagrangian mechanics. The angle of the closer pendulum ϕ and the angle of
the further pendulum ψ constitute the generalised coordinates

q =

[
ϕ
ψ

]
. (6.16)

In the inertial frame of reference I, the position and velocities of the centres
of mass are

IrOS1 =

[
l1 sin(ϕ)
−l1 cos(ϕ)

]
, IvS1 =

[
ϕ̇l1 cos(ϕ)
ϕ̇l1 sin(ϕ)

]
,

IrOS2 =

[
l1 sin(ϕ) + l2 sin(ψ)
−l1 cos(ϕ)− l2 cos(ψ)

]
, IvS2 =

[
ϕ̇l1 cos(ϕ) + ψ̇l2 cos(ψ)
ϕ̇l1 sin(ϕ) + ψ̇l2 sin(ψ)

]
.

The kinetic energy is

T =
1
2
(m1 + m2)l2

1 ϕ̇2 +
1
2

m2l2
2 ψ̇2 + l1l2m2 cos(ϕ− ψ)ϕ̇ψ̇ (6.17)

and the potential energy is

V = − ((m1 + m2)l1 cos(ϕ) + m2l2 cos(ψ)) g. (6.18)

The Euler-Lagrange equation is

d
dt

∂T
∂q̇
− ∂T

∂q
+

∂V
∂q

= fNP (6.19)
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Figure 6.2: Diagram of the double pendulum. The rods of length l1 and l2
are assumed to be weightless with two point masses with weights m1 and
m2 attached to their ends. The torques η and τ are the inputs to the system.
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with fNP =
[
η τ

]T . This leads to the equations of motion

ϕ̈ =
1

l1
(
m1 + m2 sin2(ϕ− ψ)

) η

l1

− cos(ϕ− ψ)

l1
(
m1 + m2 sin2(ϕ− ψ)

) τ

l2

− m1 sin(ϕ) + m2 cos(ψ) sin(ϕ− ψ)

l1
(
m1 + m2 sin2(ϕ− ψ)

) g

− l1m2 sin(ϕ− ψ) cos(ϕ− ψ)

l1
(
m1 + m2 sin2(ϕ− ψ)

) ϕ̇2

− l2m2 sin(ϕ− ψ)

l1
(
m1 + m2 sin2(ϕ− ψ)

) ψ̇2,

(6.20)

ψ̈ = − cos(ϕ− ψ)

l2
(
m1 + m2 sin2(ϕ− ψ)

) η

l1

+
m1 + m2

l2
(
m1 + m2 sin2(ϕ− ψ)

) τ

m2l2

+
(m1 + m2) cos(ϕ) sin(ϕ− ψ)

l2
(
m1 + m2 sin2(ϕ− ψ)

) g

+
(m1 + m2)l1 sin(ϕ− ψ)

l2
(
m1 + m2 sin2(ϕ− ψ)

) ϕ̇2

+
l2m2 sin(ϕ− ψ) cos(ϕ− ψ)

l2
(
m1 + m2 sin2(ϕ− ψ)

) ψ̇2.

(6.21)

With the state vector

x =


ϕ
ψ
ϕ̇
ψ̇


the state space is

ẋ = f (x, η, τ) =


ϕ̇
ψ̇

f3(x, η, τ)
f4(x, η, τ)


where f3 is equation (6.20) and f4 is equation (6.21).
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Glossary

ILC iterative learning control. 9, 10, 12–15, 17, 21–24, 31, 33, 35, 38–51, 54–57,
59, 60

LQR linear quadratic regulator. 18, 19, 24, 31, 33–45, 50, 51, 53–55, 57, 59, 68,
69

PD proportional and differentiating. 17, 23

PID proportional, integrating and differentiating. 17

RL reinforcement learning. 9, 10, 12, 21, 59
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